代码之家  ›  专栏  ›  技术社区  ›  RKIDEV

Panda迭代行并将第n行值乘以下一(n+1)行值

  •  1
  • RKIDEV  · 技术社区  · 10 月前

    我试图迭代多列行,然后将第n行乘以n+1行,再添加列。

    我尝试了下面的代码,它工作得很好。

    还有其他简单的方法可以同时完成减法和乘法部分吗?

    import pandas as pd
    
    df = pd.DataFrame({'C': ["Spark","PySpark","Python","pandas","Java"],
                        'F' : [2,4,3,5,4],
                        'D':[3,4,6,5,5]})
    
    df1 = pd.DataFrame({'C': ["Spark","PySpark","Python","pandas","Java"],
                        'F': [1,2,1,2,1],
                        'D':[1,2,2,2,1]})
    
    df = pd.merge(df, df1, on="C")
    
    df['F_x-F_y'] = df['F_x'] - df['F_y']
    df['D_x-D_y'] = df['D_x'] - df['D_y']
    
    for index, row in df.iterrows():
        df['F_mul'] = df['F_x-F_y'].mul(df['F_x-F_y'].shift())
        df['D_mul'] = df['D_x-D_y'].mul(df['D_x-D_y'].shift())
    
    df['F+D'] = df['F_mul'] + df['D_mul']
    

    输出-

             C  F_x  D_x  F_y  D_y  F_x-F_y  D_x-D_y  F_mul  D_mul   F+D
    0    Spark    2    3    1    1        1        2    NaN    NaN   NaN
    1  PySpark    4    4    2    2        2        2    2.0    4.0   6.0
    2   Python    3    6    1    2        2        4    4.0    8.0  12.0
    3   pandas    5    5    2    2        3        3    6.0   12.0  18.0
    4     Java    4    5    1    1        3        4    9.0   12.0  21.0
    
    3 回复  |  直到 10 月前
        1
  •  2
  •   jezrael    10 月前

    首先删除迭代 iterrows ,则可以通过以下方式简化泛化解:

    cols = ['F','D']
    
    for col in cols:
        s = df[f'{col}_x'].sub(df[f'{col}_y'])
        df[f'{col}_mul'] = s.mul(s.shift())
    
    df['+'.join(cols)] = df.filter(like='mul').sum(axis=1, min_count=1)
    print (df)
             C  F_x  D_x  F_y  D_y  F_mul  D_mul   F+D
    0    Spark    2    3    1    1    NaN    NaN   NaN
    1  PySpark    4    4    2    2    2.0    4.0   6.0
    2   Python    3    6    1    2    4.0    8.0  12.0
    3   pandas    5    5    2    2    6.0   12.0  18.0
    4     Java    4    5    1    1    9.0   12.0  21.0
    

    另一个想法是一起处理所有列——优点是不需要指定要处理的列:

    df1 = (df.filter(like='x').rename(columns=lambda x: x.replace('x','mul'))
             .sub(df.filter(like='y').rename(columns=lambda x: x.replace('y','mul'))))
    
    df2 = df1.mul(df1.shift())
    df = df.join(df2)
    
    df['+'.join(x.replace('_mul','') for x in df2.columns)] = df2.sum(axis=1, min_count=1)
    print (df)
             C  F_x  D_x  F_y  D_y  F_mul  D_mul   F+D
    0    Spark    2    3    1    1    NaN    NaN   NaN
    1  PySpark    4    4    2    2    2.0    4.0   6.0
    2   Python    3    6    1    2    4.0    8.0  12.0
    3   pandas    5    5    2    2    6.0   12.0  18.0
    4     Java    4    5    1    1    9.0   12.0  21.0
    
        2
  •  2
  •   mozway    10 月前

    你真的不应该使用循环或 iterrows 在熊猫。

    你想做的事情可以矢量化地实现。你不应该有钥匙 C 作为列,而不是作为 指数 利用索引的自动对齐:

    # ensure C is the index
    df = df.set_index('C')
    df1 = df1.set_index('C')
    
    # compute the difference
    sub = df.sub(df1)
    
    # combine df/df1/sub and compute the shifted multiplication
    out = (pd.concat([df.add_suffix('_x'),
                      df1.add_suffix('_y'),
                      sub.add_suffix('_sub'),
                      sub.mul(sub.shift()).add_suffix('_mul')
                     ], axis=1)
          )
    
    # compute the total sum
    out['+'.join(df)] = out.filter(like='_mul').sum(axis=1, min_count=1)
    
    # reset_index
    out = out.reset_index()
    

    你甚至可以将所有内容都作为一个表达式(sub除外):

    sub = df.sub(df1)
    
    out = (pd.concat([df.add_suffix('_x'),
                      df1.add_suffix('_y'),
                      sub.add_suffix('_sub'),
                      sub.mul(sub.shift()).add_suffix('_mul')
                     ], axis=1)
             .assign(**{'+'.join(df): lambda x: x.filter(like='_mul')
                                                 .sum(axis=1, min_count=1)})
             .reset_index()
          )
    

    输出:

             C  F_x  D_x  F_y  D_y  F_sub  D_sub  F_mul  D_mul   F+D
    0    Spark    2    3    1    1      1      2    NaN    NaN   NaN
    1  PySpark    4    4    2    2      2      2    2.0    4.0   6.0
    2   Python    3    6    1    2      2      4    4.0    8.0  12.0
    3   pandas    5    5    2    2      3      3    6.0   12.0  18.0
    4     Java    4    5    1    1      3      4    9.0   12.0  21.0
    

    如果你不需要中间体 _sub / _mul 列,这甚至更容易:

    sub = df.sub(df1)
    
    out = pd.concat([df.add_suffix('_x'),
                     df1.add_suffix('_y'),
                     sub.mul(sub.shift())
                        .sum(axis=1, min_count=1).rename('+'.join(df))
                    ], axis=1).reset_index()
    

    或者:

    sub = df.sub(df1)
    
    out = (df.join(df1, lsuffix='_x', rsuffix='_y')
             .assign(**{'+'.join(df): sub.mul(sub.shift())
                                         .sum(axis=1, min_count=1)})
             .reset_index()
          )
    

    输出:

             C  F_x  D_x  F_y  D_y   F+D
    0    Spark    2    3    1    1   NaN
    1  PySpark    4    4    2    2   6.0
    2   Python    3    6    1    2  12.0
    3   pandas    5    5    2    2  18.0
    4     Java    4    5    1    1  21.0
    
        3
  •  1
  •   mcvincekova    10 月前

    您可以完全删除迭代槽行。 您的代码在内部不执行任何特定于行的操作 iterrows() 循环--两者都没有 index 也没有 row 使用值。结果是,在每次迭代中,你最终都会重新计算整个列(F_mul和D_mul)。

    例子

    ...
    
    # Multiply with shifted values instead of using iterrows()
    df['F_mul'] = df['F_x-F_y'] * df['F_x-F_y'].shift()
    df['D_mul'] = df['D_x-D_y'] * df['D_x-D_y'].shift()
    ...