pd.DataFrame(my_csr_matrix.todense())
以下是概念证明:
import random
import lorem
import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer
m = 10
random.seed(0)
data = [lorem.paragraph() for _ in range(m)]
cv = CountVectorizer()
cv.fit(data)
df = pd.DataFrame(data=cv.transform(data).todense())
print(df.shape)
print(df.head())
(10, 27)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
0 1 2 2 3 3 0 2 0 3 1 2 2 2 1 1 5 3 2 1 3 1 0 2 2 1 4 4
1 0 0 4 1 0 0 1 3 0 3 2 0 1 0 1 1 1 5 3 2 0 0 1 0 0 3 1
2 0 2 3 1 1 1 2 0 2 0 1 1 1 1 1 3 2 0 1 2 1 4 3 0 1 2 5
3 3 3 4 7 1 2 4 2 2 0 1 2 1 1 0 0 0 2 1 3 2 2 2 2 0 3 4
4 2 3 1 2 3 4 1 1 4 3 2 4 2 2 3 3 2 0 2 3 2 5 4 3 2 1 2