梯度下降和溢出错误
我目前正在python中实现矢量化梯度下降。然而,我继续得到一个溢出错误。不过,我的数据集中的数字并不是非常大。我使用以下公式:
我选择此实现是为了避免使用派生。有没有人对如何解决这个问题有任何建议,或者我的做法是否有误?提前感谢您!
数据集链接:
https://www.kaggle.com/CooperUnion/anime-recommendations-database/data
## Cleaning Data ##
import math
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
data = pd.read_csv('anime.csv')
# print(data.corr())
# print(data['members'].isnull().values.any()) # Prints False
# print(data['rating'].isnull().values.any()) # Prints True
members = [] # Corresponding fan club size for row
ratings = [] # Corresponding rating for row
for row in data.iterrows():
if not math.isnan(row[1]['rating']): # Checks for Null ratings
members.append(row[1]['members'])
ratings.append(row[1]['rating'])
plt.plot(members, ratings)
plt.savefig('scatterplot.png')
theta0 = 0.3 # Random guess
theta1 = 0.3 # Random guess
error = 0
公式的
def hypothesis(x, theta0, theta1):
return theta0 + theta1 * x
def costFunction(x, y, theta0, theta1, m):
loss = 0
for i in range(m): # Represents summation
loss += (hypothesis(x[i], theta0, theta1) - y[i])**2
loss *= 1 / (2 * m) # Represents 1/2m
return loss
def gradientDescent(x, y, theta0, theta1, alpha, m, iterations=1500):
for i in range(iterations):
gradient0 = 0
gradient1 = 0
for j in range(m):
gradient0 += hypothesis(x[j], theta0, theta1) - y[j]
gradient1 += (hypothesis(x[j], theta0, theta1) - y[j]) * x[j]
gradient0 *= 1/m
gradient1 *= 1/m
temp0 = theta0 - alpha * gradient0
temp1 = theta1 - alpha * gradient1
theta0 = temp0
theta1 = temp1
error = costFunction(x, y, theta0, theta1, len(y))
print("Error is:", error)
return theta0, theta1
print(gradientDescent(members, ratings, theta0, theta1, 0.01, len(ratings)))
错误的
经过多次迭代后,在gradientDescent函数中调用costFunction会给我一个OverflowerError:(34,“结果太大”)。然而,我希望我的代码不断打印出一个递减的错误值。
Error is: 1.7515692852199285e+23
Error is: 2.012089675182454e+38
Error is: 2.3113586742689143e+53
Error is: 2.6551395730578252e+68
Error is: 3.05005286756189e+83
Error is: 3.503703756035943e+98
Error is: 4.024828599077087e+113
Error is: 4.623463163528686e+128
Error is: 5.311135890211131e+143
Error is: 6.101089907410428e+158
Error is: 7.008538065634975e+173
Error is: 8.050955905074458e+188
Error is: 9.248418197694096e+203
Error is: 1.0623985545062037e+219
Error is: 1.220414847696018e+234
Error is: 1.4019337603196565e+249
Error is: 1.6104509643047377e+264
Error is: 1.8499820618048921e+279
Error is: 2.1251399172389593e+294
Traceback (most recent call last):
File "tyreeGradientDescent.py", line 54, in <module>
print(gradientDescent(members, ratings, theta0, theta1, 0.01, len(ratings)))
File "tyreeGradientDescent.py", line 50, in gradientDescent
error = costFunction(x, y, theta0, theta1, len(y))
File "tyreeGradientDescent.py", line 33, in costFunction
loss += (hypothesis(x[i], theta0, theta1) - y[i])**2
OverflowError: (34, 'Result too large')