-
什么是枢轴?
-
我怎么旋转?
-
这是支点吗?
-
长格式到宽格式?
我见过很多关于透视表的问题。即使他们不知道他们在询问数据透视表,他们通常是这样。几乎不可能写出一个规范的问题和答案,包括所有方面的旋转。。。
... 但我要试一试。
现有问题和答案的问题在于,问题往往集中在细微差别上,而操作人员很难概括这些细微差别,以便使用现有的好答案。然而,没有一个答案试图给出一个全面的解释(因为这是一项艰巨的任务)
看看我的一些例子
google search
-
How to pivot a dataframe in Pandas?
-
很好的问答。但答案只回答了具体的问题,几乎没有任何解释。
-
pandas pivot table to data frame
-
在这个问题中,运算与轴的输出有关。也就是柱子的样子。OP希望它看起来像R。这对熊猫用户没什么帮助。
-
pandas pivoting a dataframe, duplicate rows
-
另一个不错的问题,但答案集中在一个方法上,即
pd.DataFrame.pivot
pivot
他们得到零星的结果,可能无法回答他们的具体问题。
安装程序
您可能会注意到我的列和相关的列值的命名很明显,以符合我将如何在下面的答案中旋转。
import numpy as np
import pandas as pd
from numpy.core.defchararray import add
np.random.seed([3,1415])
n = 20
cols = np.array(['key', 'row', 'item', 'col'])
arr1 = (np.random.randint(5, size=(n, 4)) // [2, 1, 2, 1]).astype(str)
df = pd.DataFrame(
add(cols, arr1), columns=cols
).join(
pd.DataFrame(np.random.rand(n, 2).round(2)).add_prefix('val')
)
print(df)
key row item col val0 val1
0 key0 row3 item1 col3 0.81 0.04
1 key1 row2 item1 col2 0.44 0.07
2 key1 row0 item1 col0 0.77 0.01
3 key0 row4 item0 col2 0.15 0.59
4 key1 row0 item2 col1 0.81 0.64
5 key1 row2 item2 col4 0.13 0.88
6 key2 row4 item1 col3 0.88 0.39
7 key1 row4 item1 col1 0.10 0.07
8 key1 row0 item2 col4 0.65 0.02
9 key1 row2 item0 col2 0.35 0.61
10 key2 row0 item2 col1 0.40 0.85
11 key2 row4 item1 col2 0.64 0.25
12 key0 row2 item2 col3 0.50 0.44
13 key0 row4 item1 col4 0.24 0.46
14 key1 row3 item2 col3 0.28 0.11
15 key0 row3 item1 col1 0.31 0.23
16 key0 row0 item2 col3 0.86 0.01
17 key0 row4 item0 col3 0.64 0.21
18 key2 row2 item2 col0 0.13 0.45
19 key0 row2 item0 col4 0.37 0.70
问题
-
为什么我得到
ValueError: Index contains duplicate entries, cannot reshape
-
df
以至于
col
值是列,
row
val0
是价值观吗?
col col0 col1 col2 col3 col4
row
row0 0.77 0.605 NaN 0.860 0.65
row2 0.13 NaN 0.395 0.500 0.25
row3 NaN 0.310 NaN 0.545 NaN
row4 NaN 0.100 0.395 0.760 0.24
-
我如何旋转
测向
以至于
上校
值是列,
行
值是指
是值,缺少的值是
0
?
col col0 col1 col2 col3 col4
row
row0 0.77 0.605 0.000 0.860 0.65
row2 0.13 0.000 0.395 0.500 0.25
row3 0.00 0.310 0.000 0.545 0.00
row4 0.00 0.100 0.395 0.760 0.24
-
我能买点别的吗
mean
,也许吧
sum
?
col col0 col1 col2 col3 col4
row
row0 0.77 1.21 0.00 0.86 0.65
row2 0.13 0.00 0.79 0.50 0.50
row3 0.00 0.31 0.00 1.09 0.00
row4 0.00 0.10 0.79 1.52 0.24
-
sum mean
col col0 col1 col2 col3 col4 col0 col1 col2 col3 col4
row
row0 0.77 1.21 0.00 0.86 0.65 0.77 0.605 0.000 0.860 0.65
row2 0.13 0.00 0.79 0.50 0.50 0.13 0.000 0.395 0.500 0.25
row3 0.00 0.31 0.00 1.09 0.00 0.00 0.310 0.000 0.545 0.00
row4 0.00 0.10 0.79 1.52 0.24 0.00 0.100 0.395 0.760 0.24
-
我可以聚合多个值列吗?
val0 val1
col col0 col1 col2 col3 col4 col0 col1 col2 col3 col4
row
row0 0.77 0.605 0.000 0.860 0.65 0.01 0.745 0.00 0.010 0.02
row2 0.13 0.000 0.395 0.500 0.25 0.45 0.000 0.34 0.440 0.79
row3 0.00 0.310 0.000 0.545 0.00 0.00 0.230 0.00 0.075 0.00
row4 0.00 0.100 0.395 0.760 0.24 0.00 0.070 0.42 0.300 0.46
-
是否可以按多个列细分?
item item0 item1 item2
col col2 col3 col4 col0 col1 col2 col3 col4 col0 col1 col3 col4
row
row0 0.00 0.00 0.00 0.77 0.00 0.00 0.00 0.00 0.00 0.605 0.86 0.65
row2 0.35 0.00 0.37 0.00 0.00 0.44 0.00 0.00 0.13 0.000 0.50 0.13
row3 0.00 0.00 0.00 0.00 0.31 0.00 0.81 0.00 0.00 0.000 0.28 0.00
row4 0.15 0.64 0.00 0.00 0.10 0.64 0.88 0.24 0.00 0.000 0.00 0.00
-
item item0 item1 item2
col col2 col3 col4 col0 col1 col2 col3 col4 col0 col1 col3 col4
key row
key0 row0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.86 0.00
row2 0.00 0.00 0.37 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00
row3 0.00 0.00 0.00 0.00 0.31 0.00 0.81 0.00 0.00 0.00 0.00 0.00
row4 0.15 0.64 0.00 0.00 0.00 0.00 0.00 0.24 0.00 0.00 0.00 0.00
key1 row0 0.00 0.00 0.00 0.77 0.00 0.00 0.00 0.00 0.00 0.81 0.00 0.65
row2 0.35 0.00 0.00 0.00 0.00 0.44 0.00 0.00 0.00 0.00 0.00 0.13
row3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.28 0.00
row4 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00
key2 row0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.40 0.00 0.00
row2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00
row4 0.00 0.00 0.00 0.00 0.00 0.64 0.88 0.00 0.00 0.00 0.00 0.00
-
我能汇总列和行同时出现的频率吗,也就是“交叉表列”?
col col0 col1 col2 col3 col4
row
row0 1 2 0 1 1
row2 1 0 2 1 2
row3 0 1 0 2 0
row4 0 1 2 2 1
-
np.random.seed([3, 1415])
df2 = pd.DataFrame({'A': list('aaaabbbc'), 'B': np.random.choice(15, 8)})
df2
A B
0 a 0
1 a 11
2 a 2
3 a 11
4 b 10
5 b 10
6 b 14
7 c 7
预期应该看起来像
a b c
0 0.0 10.0 7.0
1 11.0 10.0 NaN
2 2.0 14.0 NaN
3 11.0 NaN NaN
-
如何将多个索引展平为单个索引
从
1 2
1 1 2
a 2 1 1
b 2 1 0
c 1 0 0
到
1|1 2|1 2|2
a 2 1 1
b 2 1 0
c 1 0 0