使用参数
axis=1
对于
mean
每行,
numeric_only
参数似乎应省略:
df['mean'] = df.mean(axis=1)
print (df)
CellName Apr-2018 Feb-2018 Jan-2018 Mar-2018 mean
0 BDG652ML_KPBENDULML1 9.450841 24.119474 27.091426 17.527006 19.547187
1 BDG652ML_KPBENDULML2 15.917555 10.548731 11.019208 14.592388 13.019470
2 BDG652ML_KPBENDULML3 24.957360 21.122519 21.197216 24.950549 23.056911
df['std'] = df.std(axis=1)
print (df)
CellName Apr-2018 Feb-2018 Jan-2018 Mar-2018 std
0 BDG652ML_KPBENDULML1 9.450841 24.119474 27.091426 17.527006 7.828126
1 BDG652ML_KPBENDULML2 15.917555 10.548731 11.019208 14.592388 2.644401
2 BDG652ML_KPBENDULML3 24.957360 21.122519 21.197216 24.950549 2.190731
如果要添加两列
assign
是你的朋友,因为
意思是
或
std
仅需要原始数字列中的计数:
df = df.assign(std=df.std(axis=1), mean=df.mean(axis=1))
print (df)
CellName Apr-2018 Feb-2018 Jan-2018 Mar-2018 std \
0 BDG652ML_KPBENDULML1 9.450841 24.119474 27.091426 17.527006 7.828126
1 BDG652ML_KPBENDULML2 15.917555 10.548731 11.019208 14.592388 2.644401
2 BDG652ML_KPBENDULML3 24.957360 21.122519 21.197216 24.950549 2.190731
mean
0 19.547187
1 13.019470
2 23.056911