代码之家  ›  专栏  ›  技术社区  ›  Googlebot

如何将提取的特征传递给Keras模型?

  •  1
  • Googlebot  · 技术社区  · 6 年前

    我从csv文件中提取一系列图片的特征及其标签,如下所示

    data = pandas.read_csv("data.csv", delimiter=',', dtype=str)
    for index, row in data.iterrows():
        img = image.load_img(row['image_path'], target_size=(img_width, img_height))
        trainImage = image.img_to_array(img)
        trainImage = np.expand_dims(trainImage, axis=0)
    

    我该怎么保存 trainImages trainLabels 在上面的循环中传递到相应的数组中以传递到模型

    trainLabels = np_utils.to_categorical(trainLabels, num_classes)
    model.fit(trainImages, trainLabels, nb_epoch=3, batch_size=16)
    
    1 回复  |  直到 6 年前
        1
  •  1
  •   Samer Ayoub    6 年前
    # create lists to hold data
    X_train, y_train = [], []
    
    # while looping add feature vector and labels to X_train, y_train resp.
    X_train.append(trainImage)
    y_train.append(trainLabel)
    
    # convert y_train to categorical
    
    # pass to model