reindex
df
,我想对这些测量值进行重新索引和插值,使它们与其他数据对齐。
我的实际数据有7个索引级别和几个不同的度量。我希望这个玩具数据问题的解决方案适用于我的真实数据。它是“小数据”;每个单独的测量值为几KB。
这里有两个玩具问题,一个表现出预期的行为,另一个似乎什么都不做。
单级索引,按预期工作:
"""
step,value
1,1
3,2
5,1
"""
df_i = pd.read_clipboard(sep=",").set_index("step")
print(df_i)
new_index = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9])
df_i = df_i.reindex(new_index).interpolate()
print(df_i)
输出,原始df和重新索引和插值的df:
value
step
1 1
3 2
5 1
value
step
1 1.0
2 1.5
3 2.0
4 1.5
5 1.0
6 1.0
7 1.0
8 1.0
9 1.0
效果很好。
"""
sample,meas_id,step,value
1,1,1,1
1,1,3,2
1,1,5,1
1,2,3,2
1,2,5,2
1,2,7,1
1,2,9,0
"""
df_mi = pd.read_clipboard(sep=",").set_index(["sample", "meas_id", "step"])
print(df_mi)
df_mi = df_mi.reindex(new_index, level="step").interpolate()
print(df_mi)
输出,重新索引后不变(因此插值后不变):
value
sample meas_id step
1 1 1 1
3 2
5 1
2 3 2
5 2
7 1
9 0
value
sample meas_id step
1 1 1 1
3 2
5 1
2 3 2
5 2
7 1
9 0
事实上
在多索引df中重新索引列?
这是我想要的输出,假设线性插值:
value
sample meas_id step
1 1 1 1
2 1.5
3 2
5 1
6 1
7 1
8 1
9 1
2 1 NaN (or 2)
2 NaN (or 2)
3 2
4 2
5 2
6 1.5
7 1
8 0.5
9 0
Fill multi-index Pandas DataFrame with interpolation
Resampling Within a Pandas MultiIndex
pandas multiindex dataframe, ND interpolation for missing values
Fill multi-index Pandas DataFrame with interpolation
https://pandas.pydata.org/pandas-docs/stable/basics.html#basics-reindexing
可能与GitHub相关的问题:
https://github.com/numpy/numpy/issues/11975
https://github.com/pandas-dev/pandas/issues/23104
https://github.com/pandas-dev/pandas/issues/17132