代码之家  ›  专栏  ›  技术社区  ›  Shankar Panda

pyspark:如何从pyspark中的变量创建json和csv文件?

  •  0
  • Shankar Panda  · 技术社区  · 6 年前

    我试图将变量的结果写入一个csv文件,然后从中创建一个json。for循环的每次迭代都会将下面的结果写入变量res_df。如果可以直接创建一个JSON而不创建一个csv,那么我也很乐意实现它。请帮忙。

    'var_id', 10000001, 14003088.0, 14228946.912793402, 1874168.857698741, 15017976.0, 18000192, 0
    

    现在我想将这个结果附加到一个csv文件中,然后从中创建一个json。我用Python代码实现了它。现在需要你帮助如何在Pyshark中实现同样的目标

    Python代码:

    res_df=line,x.min(),np.percentile(x, 25),np.mean(x),np.std(x),np.percentile(x, 75),x.max(),df[line].isnull().mean() * 100
            with open(data_output_file, 'a', newline='') as csvfile:
                writerows = csv.writer(csvfile, delimiter=',',
                                quotechar='"', quoting=csv.QUOTE_MINIMAL)
                writerows.writerow(map(lambda x: x, res_df))
    
    quality_json_df = pd.read_csv(r'./DQ_RESULT.csv')
    # it will dump json to file
    quality_json_df.to_json("./Dq_Data.json", orient="records")
    

    我的Pyspark Code

    for line in tcp.collect():
            #print value in MyCol1 for each row                
            print line
            v3=np.array(data.select(line).collect())
            x = v3[np.logical_not(np.isnan(v3))] 
            print(x)
            cnt_null=data.filter((data[line] == "") | data[line].isNull() | isnan(data[line])).count()
            print(cnt_null)
            res_df=line,x.min(),np.percentile(x, 25),np.mean(x),np.std(x),np.percentile(x, 75),x.max(),cnt_null
            print(res_df)
    
    1 回复  |  直到 6 年前
        1
  •  0
  •   Shankar Panda    6 年前
    json_output = []
    column_statistic = ["variable_name", "min", "Q1", "mean", "std", "Q3", "max", "null_value"]
    for line in tcp.collect():
            # print value in MyCol1 for each row
            print
            line
            v3 = np.array(data.select(line).collect())
            x = v3[np.logical_not(np.isnan(v3))]
            notnan_cnt = np.count_nonzero(v3)
            print(x)
            cnt_null = data.filter((data[line] == "") | data[line].isNull() | isnan(data[line])).count()
            print(cnt_null, notnan_cnt)
            res_df = [str(line), x.min(), np.percentile(x, 25), np.mean(x), np.std(x), np.percentile(x, 75), x.max(), cnt_null]
            json_row = {key: value for key, value in zip(column_statistic, res_df)}
            json_output.append(json_row)
            print(res_df) 
    
    with open("json_result.json", "w") as fp:
                    json.dump(json_output, fp)