所以我有一条洛伦兹曲线适合我的数据,但我注意到了一些奇怪的小事情,我正在寻找答案。也许你能帮忙。
这是我的数据,你可以看到我拿了
scaling='density'
但是当我
spectrum
我的代码做了一些奇怪的事情。
for dataset in [Bxfft]:
dataset = np.asarray(dataset)
freqs, psd = signal.welch(dataset, fs=266336/300, window='hamming', nperseg=16192, scaling='density')
plt.semilogy(freqs[30:-7000], psd[30:-7000]/dataset.size**0, color='r', label='Bx')
x = freqs[100:-7900]
y = psd[100:-7900]
这是我的曲线拟合模型:
所以这段代码是从第一条黑线(曲线)开始的:
model = Model(lorentzian)
params = model.make_params(amp=6, cen=5, sig=1)
result = model.fit(y, params, x=x)
final_fit = result.best_fit
print(result.fit_report(min_correl=0.25))
plt.plot(x, final_fit, 'k-', linewidth=2)
这是第二条黑线(上曲线图,下直线图):
# 14 Hz
x2 = freqs[200:-7800]
y2 = psd[200:-7800]
model2 = Model(lorentzian)
pars2 = model2.make_params(amp=6, cen=5, sig=1)
pars2['amp'].value = 6
result2 = model2.fit(y2, pars2, x=x2)
final_fit2 = result2.best_fit
print(result2.fit_report(min_correl=0.25))
plt.plot(x2, final_fit2, 'k-', linewidth=2)
看看这张图。你有什么想法吗?
总结一下我的问题,你知道为什么我用的时候一切都很好吗(上图)
density
以及为什么我使用
光谱
我的一些数据被破解了?