代码之家  ›  专栏  ›  技术社区  ›  Nayantara Jeyaraj

相同形式的数据集有两个不同的形状

  •  1
  • Nayantara Jeyaraj  · 技术社区  · 7 年前

    我对机器学习很陌生,只是掌握技术而已。因此,我尝试使用具有4个特性的数据集和目标特性/类(真值)对以下分类器上的模型进行培训 )

    分类器

    • SGD分类器
    • 随机森林分类器
    • 线性支持向量分类器
    • 高斯过程分类器

    我正在对以下数据集的模型进行培训[数据集的一部分如下所示]。

    培训集:train_sop_truth.csv

    Subject,Predicate,Object,Computed,Truth
    concept:sportsteam:hawks,concept:teamplaysincity,concept:city:atlanta,0.4255912602,1
    concept:stadiumoreventvenue:honda+AF8-center,concept:stadiumlocatedincity,concept:city:anaheim,0.4276425838,1
    concept:sportsteam:ducks,concept:teamplaysincity,concept:city:anaheim,0.4762486517,1
    concept:sportsteam:n1985+AF8-chicago+AF8-bears,concept:teamplaysincity,concept:city:chicago,0.4106097221,1
    concept:stadiumoreventvenue:philips+AF8-arena,concept:stadiumlocatedincity,concept:city:atlanta,0.4190083146,1
    concept:stadiumoreventvenue:united+AF8-center,concept:stadiumlocatedincity,concept:city:chicago,0.4211134315,1
    

    测试数据集位于另一个.csv文件中,作为 test_sop_truth.csv .

    测试集:test_sop_truth.csv

    Subject,Predicate,Object,Computed,Truth
    Nigel_Cole,isMarriedTo,Kate_Isitt,0.9350595474,1
    Véra_Clouzot,isMarriedTo,Henri-Georges_Clouzot,0.4773990512,1
    Norodom_Sihanouk,produced,The_Last_Days_of_Colonel_Savath,0.3942225575,1
    Farouk_of_Egypt,isMarriedTo,Farida_of_Egypt,0.4276426733,1
    

    然后我想检查每个特性的形状,并期望看到相同数量的特性,就像我对两个数据集应用相同的转换一样。但它们不同。

    蟒蛇代码

    import pandas as pd
    import numpy as np
    from termcolor import colored
    
    features = pd.read_csv('../Data/train_sop_truth.csv')
    testFeatures = pd.read_csv('../Data/test_sop_truth.csv')
    print(features.head(5))
    
    print(colored('\nThe shape of our features is:','green'), features.shape)
    print(colored('\nThe shape of our Test features is:','green'), testFeatures.shape)
    
    print()
    print(colored('\n     DESCRIPTIVE STATISTICS\n','yellow'))
    print(colored(features.describe(),'cyan'))
    print()
    print(colored(testFeatures.describe(),'cyan'))
    
    
    features = pd.get_dummies(features)
    testFeatures = pd.get_dummies(testFeatures)
    
    features.iloc[:,5:].head(5)
    testFeatures.iloc[:,5].head(5)
    
    labels = np.array(features['Truth'])
    testlabels = np.array(testFeatures['Truth'])
    
    
    features= features.drop('Truth', axis = 1)
    testFeatures = testFeatures.drop('Truth', axis = 1)
    
    feature_list = list(features.columns)
    testFeature_list = list(testFeatures.columns)
    
    features = np.array(features)
    testFeatures = np.array(testFeatures)
    
    train_samples = 100
    
    
    testX_train, textX_test, testy_train, testy_test = model_selection.train_test_split(testFeatures, testlabels, test_size=0.25, random_state = 42)
    
    X_train, X_test, y_train, y_test = model_selection.train_test_split(features, labels, test_size = 0.25, random_state = 42)
    
    print(colored('\n    TRAINING & TESTING SETS','yellow'))
    print(colored('\nTraining Features Shape:','magenta'), X_train.shape)
    print(colored('Training Labels Shape:','magenta'), X_test.shape)
    print(colored('Testing Features Shape:','magenta'), y_train.shape)
    print(colored('Testing Labels Shape:','magenta'), y_test.shape)
    
    print()
    
    print(colored('\n    TRAINING & TESTING SETS','yellow'))
    print(colored('\nTraining Features Shape:','magenta'), testX_train.shape)
    print(colored('Training Labels Shape:','magenta'), textX_test.shape)
    print(colored('Testing Features Shape:','magenta'), testy_train.shape)
    print(colored('Testing Labels Shape:','magenta'), testy_test.shape)
    

    产量

    The shape of our features is: (1860, 5)
    
    The shape of our Test features is: (1386, 5)
    
    
         DESCRIPTIVE STATISTICS
    
              Computed        Truth
    count  1860.000000  1860.000000
    mean      0.443222     0.913441
    std       0.110788     0.281264
    min       0.000000     0.000000
    25%       0.418164     1.000000
    50%       0.427643     1.000000
    75%       0.450023     1.000000
    max       1.000000     1.000000
    
              Computed        Truth
    count  1386.000000  1386.000000
    mean      0.511809     0.992063
    std       0.197954     0.088765
    min       0.009042     0.000000
    25%       0.418649     1.000000
    50%       0.429140     1.000000
    75%       0.515809     1.000000
    max       1.702856     1.000000
    
        TRAINING & TESTING SETS
    
    Training Features Shape: (1395, 1045)
    Training Labels Shape: (465, 1045)
    Testing Features Shape: (1395,)
    Testing Labels Shape: (465,)
    
    
        TRAINING & TESTING SETS
    
    Training Features Shape: (1039, 1790)
    Training Labels Shape: (347, 1790)
    Testing Features Shape: (1039,)
    Testing Labels Shape: (347,)
    

    这里我不明白的是,特征形状是如何不同的 1045 对于功能(训练集)和 1790 对于测试特性(测试集),尽管在csv文件中进行了相同的转换,并且具有相同数量的特性和特性形式。

    在此方面的任何建议或澄清将非常感谢。

    1 回复  |  直到 7 年前
        1
  •  0
  •   Venkatachalam    7 年前

    当您为测试数据集应用get-dummies时,可能会根据分类变量的数据值添加或删除一些列。

    def add_missing_dummy_columns( d, columns ):
            missing_cols = set( columns ) - set( d.columns )
            for c in missing_cols:
                d[c] = 0
    
    def fix_columns( d, columns ):  
    
        add_missing_dummy_columns( d, columns )
    
        # make sure we have all the columns we need
        assert( set( columns ) - set( d.columns ) == set())
    
        extra_cols = set( d.columns ) - set( columns )
        if extra_cols: print ("extra columns:", extra_cols)
    
        d = d[ columns ]
        return d
    
    testFeatures= fix_columns( testFeatures, features.columns )