下面是一个将
gafs()
函数使用
doParallel
打包并修改一些其他参数以使其更快。在可能的情况下,我包括运行时间。
原始代码正在使用交叉验证(
method = "cv"
)不重复交叉验证(
method = "repeatedcv"
)所以我相信
repeats = 2
参数被忽略。我没有在并行示例中包含这个选项。
弗斯特
,在不进行任何修改或并行化的情况下使用原始代码:
> library(caret)
> data(iris)
> set.seed(1)
> st.01 <- system.time(results.01 <- gafs(iris[,1:4], iris[,5],
iters = 2,
method = "xgbTree",
metric = "Accuracy",
gafsControl = gafsControl(functions = caretGA,
method = "cv",
repeats = 2,
verbose = TRUE),
trConrol = trainControl(method = "cv",
classProbs = TRUE,
verboseIter = TRUE)))
Fold01 1 0.9596575 (1)
Fold01 2 0.9596575->0.9667641 (1->1, 100.0%) *
Fold02 1 0.9598146 (1)
Fold02 2 0.9598146->0.9641482 (1->1, 100.0%) *
Fold03 1 0.9502661 (1)
我昨晚(8到10个小时)运行了上述代码,但由于运行时间太长而停止运行。运行时间的粗略估计至少为24小时。
第二
,包括减少
popSize
参数(从50到20)
allowParallel
和
genParallel
选项到
gafsControl()
最后减少
number
两个区域的折叠(从10到5)
GAFS控件()
和
trControl()
:
> library(doParallel)
> cl <- makePSOCKcluster(detectCores() - 1)
> registerDoParallel(cl)
> set.seed(1)
> st.09 <- system.time(results.09 <- gafs(iris[,1:4], iris[,5],
iters = 2,
popSize = 20,
method = "xgbTree",
metric = "Accuracy",
gafsControl = gafsControl(functions = caretGA,
method = "cv",
number = 5,
verbose = TRUE,
allowParallel = TRUE,
genParallel = TRUE),
trConrol = trainControl(method = "cv",
number = 5,
classProbs = TRUE,
verboseIter = TRUE)))
final GA
1 0.9508099 (4)
2 0.9508099->0.9561501 (4->1, 25.0%) *
final model
> st.09
user system elapsed
3.536 0.173 4152.988
我的系统有4个核心,但按规定它只使用3个,我验证了它运行的是3R进程。
这个
GAFS控件()
文档描述
允许并行
和
基因平行
像这样:
-
允许并行
:如果并行后端已加载并可用,
函数应该使用它吗?
-
基因平行
:如果并行后端已加载并可用,则应该
“gafs”使用it tp在
重新取样中的一代人?
插入符号文档建议
允许并行
选项将比
基因平行
选项:
https://topepo.github.io/caret/feature-selection-using-genetic-algorithms.html
与原始代码相比,我希望并行代码的结果至少稍有不同。以下是并行代码的结果:
> results.09
Genetic Algorithm Feature Selection
150 samples
4 predictors
3 classes: 'setosa', 'versicolor', 'virginica'
Maximum generations: 2
Population per generation: 20
Crossover probability: 0.8
Mutation probability: 0.1
Elitism: 0
Internal performance values: Accuracy, Kappa
Subset selection driven to maximize internal Accuracy
External performance values: Accuracy, Kappa
Best iteration chose by maximizing external Accuracy
External resampling method: Cross-Validated (5 fold)
During resampling:
* the top 4 selected variables (out of a possible 4):
Petal.Width (80%), Petal.Length (40%), Sepal.Length (20%), Sepal.Width (20%)
* on average, 1.6 variables were selected (min = 1, max = 4)
In the final search using the entire training set:
* 4 features selected at iteration 1 including:
Sepal.Length, Sepal.Width, Petal.Length, Petal.Width
* external performance at this iteration is
Accuracy Kappa
0.9467 0.9200