您不能裁剪并直接保存外壳,因为您可以在发布的示例中看到它们。或者,更好的是,您可以将它们裁剪并粘贴到方形/矩形画布中。但这不是你想要的这个问题的答案。
所以,如果你有电脑写的所有文本,最好的选择是开始应用
cv2.findContours()
到图像。您还可以使用其他特定工具,但目前(以及与此问题相关的)请使用此工具。
import cv2
import numpy as np
#import image
image = cv2.imread('image.png')
#grayscale
gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
cv2.imshow('gray', gray)
cv2.waitKey(0)
#binary
ret,thresh = cv2.threshold(gray,127,255,cv2.THRESH_BINARY_INV)
cv2.imshow('second', thresh)
cv2.waitKey(0)
#dilation
kernel = np.ones((1,1), np.uint8)
img_dilation = cv2.dilate(thresh, kernel, iterations=1)
cv2.imshow('dilated', img_dilation)
cv2.waitKey(0)
#find contours
im2,ctrs, hier = cv2.findContours(img_dilation.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
#sort contours
sorted_ctrs = sorted(ctrs, key=lambda ctr: cv2.boundingRect(ctr)[0])
for i, ctr in enumerate(sorted_ctrs):
# Get bounding box
x, y, w, h = cv2.boundingRect(ctr)
# Getting ROI
roi = image[y:y+h, x:x+w]
# show ROI
#cv2.imshow('segment no:'+str(i),roi)
cv2.rectangle(image,(x,y),( x + w, y + h ),(0,255,0),2)
#cv2.waitKey(0)
if w > 15 and h > 15:
cv2.imwrite('roi{}.png'.format(i), roi)
cv2.imshow('marked areas',image)
cv2.waitKey(0)
您可以调整内核以实现或多或少的矩形检测。