您有一个分段错误,因为您正在写入中的未初始化地址
void fft(complex_num* input, complex_num* output, int n)
output[i] = inp[i];
输出
来自
排队
fft(input[i], temp[i], width);
哪里
临时雇员
由设置
temp = (complex_num **) malloc(width * sizeof(complex_num*));
temp[i]
未初始化
也许
fft(input[i], temp[i], width);
应该是
fft(input[i], &temp[i], width);
虽然
快速傅里叶变换
成为:
void fft(complex_num* input, complex_num** output, int n) {
complex_num* dummy = (complex_num *)malloc(n * sizeof(complex_num));
complex_num* inp = (complex_num *)malloc(n * sizeof(complex_num));
for (int i = 0; i < n; ++i) {
dummy[i].real = 0;
dummy[i].imag = 0;
inp[i].real = 0;
inp[i].imag = 0;
}
printf("%lf", inp[1].real);
for (int i = 0; i < n; ++i) {
dummy[i] = input[i];
inp[i] = input[i];
}
fft_driver(inp, dummy, n, 1);
printf("Hello\n");
*output = inp;
}
总之还有一个问题
fft2型
在通话中:
fft(matrix[i], &temp[i], width);
因为初始化
matrix[i]
矩阵[i]
快速傅里叶变换
您正在访问这些行中的未知地址
dummy[i] = input[i];
inp[i] = input[i];
线
//matrix[i] = (complex_num*) malloc(height * sizeof(complex_num));
matrix[i] = (complex_num*) malloc(width * sizeof(complex_num));
matrix[i][j] = temp[j][i];
不能在注释中
/tmp % ./a.out
0.000000Hello
0.000000Hello
0.000000Hello
0.000000Hello
4.0000004.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.000000Hello
0.000000Hello
0.000000Hello
0.000000Hello
[(8, 0), (0, 0), (0, 0), (0, 0), ]
[(4, -4), (0, 0), (0, 0), (0, 0), ]
[(0, 0), (0, 0), (0, 0), (0, 0), ]
[(4, 4), (0, 0), (0, 0), (0, 0), ]
0.000000Hello
0.000000Hello
0.000000Hello
0.000000Hello
8.0000004.0000000.0000004.0000008.0000004.0000000.0000004.0000008.0000004.0000000.0000004.0000008.0000004.0000000.0000004.0000000.000000Hello
0.000000Hello
0.000000Hello
0.000000Hello
[(1, -0), (1, -0), (1, -0), (1, -0), ]
[(1, -2.8606e-18), (1, -2.8606e-18), (1, -2.8606e-18), (1, -2.8606e-18), ]
[(0, 0), (0, -0), (0, -0), (0, -0), ]
[(0, 2.8606e-18), (0, 2.8606e-18), (0, 2.8606e-18), (0, 2.8606e-18), ]
我不知道这是否是预期产出,但至少
瓦尔格林
不检测任何非法内存访问或未初始化的值。
如果存在内存泄漏,请执行以下操作:
在里面
代替
for (int i = 0; i < height; ++i) {
fft(matrix[i], &temp[i], width);
}
for (int i = 0; i < height; ++i) {
free(temp[i]);
fft(matrix[i], &temp[i], width);
free(matrix[i]);
}
free(matrix);
最后加上
for (int i = 0; i < height; ++i)
free(temp[i]);
free(temp);
添加
free(dummy);
在结束之前
这些更改可消除所有内存泄漏:
/tmp % valgrind --leak-check=full ./a.out
==12924== Memcheck, a memory error detector
==12924== Copyright (C) 2002-2012, and GNU GPL'd, by Julian Seward et al.
==12924== Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info
==12924== Command: ./a.out
==12924==
0.000000Hello
0.000000Hello
0.000000Hello
0.000000Hello
4.0000004.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.000000Hello
0.000000Hello
0.000000Hello
0.000000Hello
[(8, 0), (0, 0), (0, 0), (0, 0), ]
[(4, -4), (0, 0), (0, 0), (0, 0), ]
[(0, 0), (0, 0), (0, 0), (0, 0), ]
[(4, 4), (0, 0), (0, 0), (0, 0), ]
0.000000Hello
0.000000Hello
0.000000Hello
0.000000Hello
8.0000004.0000000.0000004.0000008.0000004.0000000.0000004.0000008.0000004.0000000.0000004.0000008.0000004.0000000.0000004.0000000.000000Hello
0.000000Hello
0.000000Hello
0.000000Hello
[(1, -0), (1, -0), (1, -0), (1, -0), ]
[(1, -2.8606e-18), (1, -2.8606e-18), (1, -2.8606e-18), (1, -2.8606e-18), ]
[(0, 0), (0, -0), (0, -0), (0, -0), ]
[(0, 2.8606e-18), (0, 2.8606e-18), (0, 2.8606e-18), (0, 2.8606e-18), ]
==12924==
==12924== HEAP SUMMARY:
==12924== in use at exit: 0 bytes in 0 blocks
==12924== total heap usage: 44 allocs, 44 frees, 2,688 bytes allocated
==12924==
==12924== All heap blocks were freed -- no leaks are possible
==12924==
==12924== For counts of detected and suppressed errors, rerun with: -v
==12924== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 6 from 6)
int main()
而不是
void main()
如果我把所有代码都放在帮助您,因为有很多更改:
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#ifndef M_PI
#define M_PI 3.1415927
#endif
typedef struct complex_num_struct {
double real;
double imag;
} complex_num;
complex_num add(complex_num num1, complex_num num2);
complex_num subtract(complex_num num1, complex_num num2);
complex_num multiply(complex_num num1, complex_num num2);
complex_num divide(complex_num num1, complex_num num2);
complex_num power(complex_num num, double n);
complex_num complex_exp(double theta);
double magnitude(complex_num num);
void display_complex_matrix(complex_num** matrix, int height, int width);
void fft2(complex_num** input, complex_num** output, int height, int width);
void fft_driver(complex_num input[], complex_num output[], int n, int step);
void fft(complex_num input[], complex_num * output[], int n);
void display_complex_vec(complex_num * vec, int n);
complex_num conjugate(complex_num num);
complex_num ** matrix;
complex_num ** temp;
int main() {
complex_num one;
one.real = 1;
one.imag = 0;
complex_num height, width;
height.real = 4;
width.real = 4;
height.imag = 0;
width.imag = 0;
complex_num zero;
zero.real = 0;
zero.imag = 0;
complex_num input1[] = {one, one, one, one};
complex_num input2[] = {one, one, one, one};
complex_num input3[] = {zero, zero, zero, zero};
complex_num input4[] = {zero, zero, zero, zero};
complex_num* input[] = {input1, input2, input3, input4};
complex_num* output[] = {input1, input2, input3, input4};
complex_num* conj[] = {input1, input2, input3, input4};
fft2(input, output, 4, 4);
display_complex_matrix(output, 4, 4);
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
conj[i][j] = conjugate(output[i][j]);
}
}
fft2(conj, output, 4, 4);
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
output[i][j] = conjugate(divide(conj[i][j], (multiply(height, width))));
}
}
display_complex_matrix(output, 4, 4);
}
void fft2(complex_num** input, complex_num** output, int height, int width) {
matrix = (complex_num **) malloc(height * sizeof(complex_num*));
temp = (complex_num **) malloc(width * sizeof(complex_num*));
for (int i = 0; i < height; ++i) {
fft(input[i], &temp[i], width);
}
for (int i = 0; i < height; ++i) {
matrix[i] = (complex_num*) malloc(width * sizeof(complex_num));
for (int j = 0; j < width; ++j) {
matrix[i][j] = temp[j][i];
printf("%lf", temp[j][i].real);
}
}
for (int i = 0; i < height; ++i) {
free(temp[i]);
fft(matrix[i], &temp[i], width);
free(matrix[i]);
}
free(matrix);
for (int i = 0; i < height; ++i) {
for (int j = 0; j < width; ++j) {
output[i][j] = temp[j][i];
}
}
for (int i = 0; i < height; ++i)
free(temp[i]);
free(temp);
}
void display_complex_vec(complex_num vec[], int n) {
printf("[");
for (int i = 0; i < n; ++i) {
printf("(%g, %g), ", vec[i].real, vec[i].imag);
}
printf("]\n");
}
void display_complex_matrix(complex_num** matrix, int height, int width) {
for (int i = 0; i < height; ++i) {
printf("[");
for (int j = 0; j < width; ++j) {
printf("(%g, %g), ", matrix[i][j].real, matrix[i][j].imag);
}
printf("]\n");
}
}
void fft_driver(complex_num input[], complex_num output[], int n, int step) {
complex_num diff, cexp;
if (step < n) {
fft_driver(output, input, n, step * 2);
fft_driver(output + step, input + step, n, step * 2);
for (int i = 0; i < n; i += 2 * step) {
cexp = complex_exp(-M_PI * (double) i / (double) n);
diff = multiply(complex_exp(-M_PI * (double) i / (double) n), output[i + step]);
input[i / 2] = add(output[i], diff);
input[(i + n) / 2] = subtract(output[i], diff);
//printf("(%g, %g) * (%g, %g)\n", input[i / 2].real, input[i / 2].imag, input[(i + n) / 2].real, input[(i + n) / 2].imag);
}
}
}
void fft(complex_num* input, complex_num** output, int n) {
complex_num* dummy = (complex_num *)malloc(n * sizeof(complex_num));
complex_num* inp = (complex_num *)malloc(n * sizeof(complex_num));
for (int i = 0; i < n; ++i) {
dummy[i].real = 0;
dummy[i].imag = 0;
inp[i].real = 0;
inp[i].imag = 0;
}
printf("%lf", inp[1].real);
for (int i = 0; i < n; ++i) {
dummy[i] = input[i];
inp[i] = input[i];
}
fft_driver(inp, dummy, n, 1);
free(dummy);
printf("Hello\n");
*output = inp;
}
complex_num complex_exp(double theta) {
complex_num result;
result.real = cos(theta);
result.imag = sin(theta);
return result;
}
double magnitude(complex_num num) {
return sqrt(pow(num.real, 2) + pow(num.imag, 2));
}
complex_num add(complex_num num1, complex_num num2) {
complex_num result;
result.real = num1.real + num2.real;
result.imag = num1.imag + num2.imag;
return result;
}
complex_num conjugate(complex_num num) {
complex_num result;
result.real = num.real;
result.imag = -num.imag;
return result;
}
complex_num subtract(complex_num num1, complex_num num2) {
complex_num result;
result.real = num1.real - num2.real;
result.imag = num1.imag - num2.imag;
return result;
}
complex_num multiply(complex_num num1, complex_num num2) {
complex_num result;
result.real = num1.real * num2.real - num1.imag * num2.imag;
result.imag = num1.real * num2.imag + num1.imag * num2.real;
return result;
}
complex_num divide(complex_num num1, complex_num num2) {
complex_num result;
double magnitude_square = pow(num2.real, 2) + pow(num2.imag, 2);
num2.imag = -num2.imag;
result = multiply(num1, num2);
result.real = result.real / magnitude_square;
result.imag = result.imag / magnitude_square;
return result;
}
complex_num power(complex_num num, double n) {
complex_num result;
double magnitude = sqrt(pow(num.real, 2) + pow(num.imag, 2));
result.real = pow(magnitude, n) * cos(n * atan(num.imag / num.real));
result.imag = pow(magnitude, n) * sin(n * atan(num.imag / num.real));
return result;
}