您可以使用
Normalizer
class pyspark.ml.feature.Normalizer(*args, **kwargs)
使用给定的p-范数规范化向量,使其具有单位范数。
具有
1-norm
from pyspark.ml.linalg import SparseVector
from pyspark.ml.feature import Normalizer
df = spark.createDataFrame([
(SparseVector(10,[0,1,4,6,8],[2.0,1.0,1.0,1.0,1.0]), )
], ["features"])
Normalizer(inputCol="features", outputCol="features_norm", p=1).transform(df).show(1, False)
# +--------------------------------------+---------------------------------------------------------------------------------------------------------------------+
# |features |features_norm |
# +--------------------------------------+---------------------------------------------------------------------------------------------------------------------+
# |(10,[0,1,4,6,8],[2.0,1.0,1.0,1.0,1.0])|(10,[0,1,4,6,8],[0.3333333333333333,0.16666666666666666,0.16666666666666666,0.16666666666666666,0.16666666666666666])|
# +--------------------------------------+---------------------------------------------------------------------------------------------------------------------+