代码之家  ›  专栏  ›  技术社区  ›  Ben

lmer模型拟合的R平方

  •  16
  • Ben  · 技术社区  · 8 年前

    > summary(fit1.lme <- lmer(log(log(Amplification)) ~ poly(Voltage, 3) + (1 | Serial_number), data = bdf))
    Linear mixed model fit by REML ['lmerMod']
    Formula: log(log(Amplification)) ~ poly(Voltage, 3) + (1 | Serial_number)
       Data: bdf
    
    REML criterion at convergence: -253237.6
    
    Scaled residuals: 
         Min       1Q   Median       3Q      Max 
    -14.8183  -0.4863  -0.0681   0.2941   9.3292 
    
    Random effects:
     Groups        Name        Variance Std.Dev.
     Serial_number (Intercept) 0.008435 0.09184 
     Residual                  0.001985 0.04456 
    Number of obs: 76914, groups:  Serial_number, 1270
    
    Fixed effects:
                        Estimate Std. Error t value
    (Intercept)         0.826745   0.002582     320
    poly(Voltage, 3)1 286.978430   0.045248    6342
    poly(Voltage, 3)2 -74.061993   0.045846   -1615
    poly(Voltage, 3)3  39.605454   0.045505     870
    
    Correlation of Fixed Effects:
                (Intr) p(V,3)1 p(V,3)2
    ply(Vlt,3)1 0.001                 
    ply(Vlt,3)2 0.002  0.021          
    ply(Vlt,3)3 0.001  0.032   0.028  
    
    3 回复  |  直到 8 年前
        1
  •  29
  •   abichat    8 年前

    对于R,您可以使用 r.squaredGLMM(fit1.lme) 从…起 ‘MuMIn 包裹它将返回边际和条件R。

    summary lmerTest 包裹

    http://mindingthebrain.blogspot.ch/2014/02/three-ways-to-get-parameter-specific-p.html

        2
  •  12
  •   hhh    6 年前

    我添加了一个非常小的演示,用于臭氧层的分层建模,其中建模承认它随月份而变化。你可以在下面找到比较。我可以找到 R squared 术语仅适用于 MuMIn 包裹

    > data(airquality)
    
    > MuMIn::r.squaredGLMM(lme4::lmer(data=airquality, Ozone ~ 1 + (1|Month)))
         R2m       R2c
    [1,]   0 0.2390012
    > summary(lm(data=airquality, Ozone ~ 1 + (1|Month)))$r.squared
    [1] 0
    

    线性回归

    > summary(lm(data=airquality, Ozone ~ 1 + (1|Month)))
    
    Call:
    lm(formula = Ozone ~ 1 + (1 | Month), data = airquality)
    
    Residuals:
       Min     1Q Median     3Q    Max 
    -41.13 -24.13 -10.63  21.12 125.87 
    
    Coefficients: (1 not defined because of singularities)
                  Estimate Std. Error t value Pr(>|t|)    
    (Intercept)     42.129      3.063   13.76   <2e-16 ***
    1 | MonthTRUE       NA         NA      NA       NA    
    ---
    Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    
    Residual standard error: 32.99 on 115 degrees of freedom
      (37 observations deleted due to missingness)
    

    lmer4

    > summary(lme4::lmer(data=airquality, Ozone ~ 1 + (1|Month)))
    Linear mixed model fit by REML ['lmerMod']
    Formula: Ozone ~ 1 + (1 | Month)
       Data: airquality
    
    REML criterion at convergence: 1116.5
    
    Scaled residuals: 
        Min      1Q  Median      3Q     Max 
    -1.7084 -0.6269 -0.2669  0.4121  3.7507 
    
    Random effects:
     Groups   Name        Variance Std.Dev.
     Month    (Intercept) 270.6    16.45   
     Residual             861.6    29.35   
    Number of obs: 116, groups:  Month, 5
    
    Fixed effects:
                Estimate Std. Error t value
    (Intercept)   41.093      7.922   5.187
    

    library(lmerTest)
    
    > lmerTest::lmer(data=airquality, Ozone ~ 1 + (1|Month))
    Linear mixed model fit by REML ['lmerModLmerTest']
    Formula: Ozone ~ 1 + (1 | Month)
       Data: airquality
    REML criterion at convergence: 1116.544
    Random effects:
     Groups   Name        Std.Dev.
     Month    (Intercept) 16.45   
     Residual             29.35   
    Number of obs: 116, groups:  Month, 5
    Fixed Effects:
    (Intercept)  
          41.09  
    > summary(lmerTest::lmer(data=airquality, Ozone ~ 1 + (1|Month)))
    Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
    Formula: Ozone ~ 1 + (1 | Month)
       Data: airquality
    
    REML criterion at convergence: 1116.5
    
    Scaled residuals: 
        Min      1Q  Median      3Q     Max 
    -1.7084 -0.6269 -0.2669  0.4121  3.7507 
    
    Random effects:
     Groups   Name        Variance Std.Dev.
     Month    (Intercept) 270.6    16.45   
     Residual             861.6    29.35   
    Number of obs: 116, groups:  Month, 5
    
    Fixed effects:
                Estimate Std. Error     df t value Pr(>|t|)   
    (Intercept)   41.093      7.922  4.096   5.187  0.00616 **
    ---
    Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    
        3
  •  4
  •   Issa Chi    3 年前

    您可以尝试软件包sjPlot或sjstats。第一个包帮助从lme4分析中创建APA样式的表,第二个包用于提取拟合统计数据。

    您只需编写代码:

    tab_model(fit1.lme)
    

    它将输出一个APA表,包括估计斜率、截距、CI、p值、方差、残差、观察数、ICC、边际和条件R平方等。

    看起来像这样: enter image description here