代码之家  ›  专栏  ›  技术社区  ›  user697911

属性错误:模块“torch”没有属性“device”

  •  0
  • user697911  · 技术社区  · 6 年前

    在下面的Pytorch教程中 https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html

    (pt_gpu) [martin@A08-R32-I196-3-FZ2LTP2 mlm]$ python pytorch-1.py 
    Traceback (most recent call last):
      File "pytorch-1.py", line 39, in <module>
        device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    AttributeError: module 'torch' has no attribute 'device'
    

    在下面的代码中,我添加了以下语句:

    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
        net.to(device)
    

    但这似乎是不够的。这是我第一次在linux机器上用GPU运行Pythorch。我还应该怎么做才能跑得好呢?

    class Net(nn.Module):
        def __init__(self):
            super(Net, self).__init__()
            self.conv1 = nn.Conv2d(3, 6, 5)
            self.pool = nn.MaxPool2d(2, 2)
            self.conv2 = nn.Conv2d(6, 16, 5)
    
            self.fc1 = nn.Linear(16 * 5 * 5, 120)
            self.fc2 = nn.Linear(120, 84)
            self.fc3 = nn.Linear(84, 10)
    
        def forward(self, x):
            x = self.pool(F.relu(self.conv1(x)))
            x = self.pool(F.relu(self.conv2(x)))
            x = x.view(-1, 16 * 5 * 5)
            x = F.relu(self.fc1(x))
            x = F.relu(self.fc2(x))
            x = self.fc3(x)
    
            return x
    
    
    net = Net()
    
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    net.to(device)
    
    transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
    print(transform)
    
    trainSet = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
    trainLoader = torch.utils.data.DataLoader(trainSet, batch_size=4, shuffle=True, num_workers=2)
    
    testSet = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
    testLoader = torch.utils.data.DataLoader(testSet, batch_size=4, shuffle=False, num_workers=2)
    
    classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
    
    import torch.optim as optim
    
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
    
    for epoch in range(2):
        running_loss = 0.0
        for i, data in enumerate(trainLoader, 0):
            inputs, labels = data
            inputs, labels = inputs.to(device), labels.to(device)
    
            optimizer.zero_grad()
    
            outputs = net(inputs)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()
    
            running_loss += loss.item()
            if i % 2000 == 1999:
                print('[%d, %5d] loss %.3f' % (epoch + 1, i + 1, running_loss / 2000))
    
    print('Finished traning!')
    
    
    def imshow(img):
        img = img / 2 + 0.5
        npimg = img.numpy()
        plt.imshow(numpy.transpose(npimg, (1, 2, 0)))
        plt.show()
    
    
    dataIter = iter(trainLoader)
    images, labels = dataIter.next()
    # imshow(torchvision.utils.make_grid(images))
    
    print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(4)))
    
    outputs = net(images)
    
    _, predicted = torch.max(outputs, 1)
    
    print('Predicted: ', ' '.join('%5s' % classes[predicted[j]] for j in range(4)))
    dataIter = iter(testLoader)
    images, labels = dataIter.next()
    # imshow(torchvision.utils.make_grid(images))
    
    correct = 0
    total = 0
    
    with torch.no_grad():
        for data in testLoader:
            images, labels = data
            outputs = net(images)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
    
            correct += (predicted == labels).sum().item()
    
    print("accuracy: %d %%", 100 * correct / total)
    

    编辑:

    (pt_gpu) [martin@A08-R32-I196-3-FZ2LTP2 mlm]$ conda -V
    conda 4.6.2
    

    然后我安装了pytorch gpu:

    (pt_gpu) [martin@A08-R32-I196-3-FZ2LTP2 mlm]$ conda install -c anaconda pytorch-gpu
    

    如您所见,0.1.12版已安装:

    Collecting package metadata: done
    Solving environment: done
    
    ## Package Plan ##
    
      environment location: /home/martin/anaconda3/envs/pt_gpu
    
      added / updated specs:
        - pytorch-gpu
    
    
    The following packages will be downloaded:
    
        package                    |            build
        ---------------------------|-----------------
        ca-certificates-2018.12.5  |                0         123 KB  anaconda
        certifi-2018.11.29         |           py36_0         146 KB  anaconda
        pytorch-gpu-0.1.12         |           py36_0        16.8 MB  anaconda
        ------------------------------------------------------------
                                               Total:        17.0 MB
    
    The following packages will be UPDATED:
    
      openssl              pkgs/main::openssl-1.1.1a-h7b6447c_0 --> anaconda::openssl-1.1.1-h7b6447c_0
    
    The following packages will be SUPERSEDED by a higher-priority channel:
    
      ca-certificates                                 pkgs/main --> anaconda
      certifi                                         pkgs/main --> anaconda
      mkl                    pkgs/main::mkl-2017.0.4-h4c4d0af_0 --> anaconda::mkl-2017.0.1-0
      pytorch-gpu                                     pkgs/free --> anaconda
    
    
    Proceed ([y]/n)? y
    
    
    Downloading and Extracting Packages
    certifi-2018.11.29   | 146 KB    | ########################################################################################################################## | 100% 
    ca-certificates-2018 | 123 KB    | ########################################################################################################################## | 100% 
    pytorch-gpu-0.1.12   | 16.8 MB   | ########################################################################################################################## | 100% 
    Preparing transaction: done
    Verifying transaction: done
    Executing transaction: done
    

    (pt_gpu) [martin@A08-R32-I196-3-FZ2LTP2 mlm]$ python -c "import torch; print(torch.__version__)"
    0.1.12
    

    为什么要安装这么低的版本?

    0 回复  |  直到 6 年前
        1
  •  0
  •   Tanish Jain    6 年前

    尽管这个问题已经很老了,但我还是建议那些面临这个问题的人访问pytorch.org并检查安装pytorch的命令,这里有一节专门讨论这个问题。