我正试图构建一个数据加载器,这就是它的样子
`class WhaleData(Dataset):
def __init__(self, data_file, root_dir , transform = None):
self.csv_file = pd.read_csv(data_file)
self.root_dir = root_dir
self.transform = transforms.Resize(224)
def __len__(self):
return len(os.listdir(self.root_dir))
def __getitem__(self, index):
image = os.path.join(self.root_dir, self.csv_file['Image'][index])
image = Image.open(image)
image = self.transform(image)
image = np.array(image)
label = self.csv_file['Image'][index]
sample = {'image': image, 'label':label}
return sample
trainset = WhaleData(data_file = '/mnt/55-91e8-b2383e89165f/Ryan/1234/train.csv',
root_dir = '/mnt/4d55-91e8-b2383e89165f/Ryan/1234/train')
train_loader = torch.utils.data.DataLoader(trainset , batch_size = 4, shuffle =True,num_workers= 2)
for i, batch in enumerate(train_loader):
(i, batch)
当我尝试运行这段代码时,我得到了这个错误,我确实得到了错误的性质,即我的所有图像可能都不是同一形状,并且我的图像都不是同一形状,但是如果我没有错,那么只有当我将它们送入网络时才会出现错误,因为这些图像都是不同的。NT形状,但为什么它会在这里抛出一个错误?
任何关于我哪里出错的建议都会非常有帮助,
如果需要,我很乐意提供任何额外的信息,
谢谢
RuntimeError: Traceback (most recent call last):
File "/usr/local/lib/python3.5/dist-packages/torch/utils/data/dataloader.py", line 42, in _worker_loop
samples = collate_fn([dataset[i] for i in batch_indices])
File "/usr/local/lib/python3.5/dist-packages/torch/utils/data/dataloader.py", line 116, in default_collate
return {key: default_collate([d[key] for d in batch]) for key in batch[0]}
File "/usr/local/lib/python3.5/dist-packages/torch/utils/data/dataloader.py", line 116, in <dictcomp>
return {key: default_collate([d[key] for d in batch]) for key in batch[0]}
File "/usr/local/lib/python3.5/dist-packages/torch/utils/data/dataloader.py", line 105, in default_collate
return torch.stack([torch.from_numpy(b) for b in batch], 0)
File "/usr/local/lib/python3.5/dist-packages/torch/functional.py", line 64, in stack
return torch.cat(inputs, dim)
RuntimeError: inconsistent tensor sizes at /pytorch/torch/lib/TH/generic /THTensorMath.c:2864