import numpy as np
import tensorflow as tf
import time
def make_sample():
# something that takes time and needs to be on CPU w/o tf ops
p = 1
for n in range(1000000):
p = (p + np.random.random()) * np.random.random()
return np.float32(p)
read_threads = 1
with tf.device('/cpu:0'):
example_list = [tf.py_func(make_sample, [], [tf.float32]) for _ in range(read_threads)]
for ex in example_list:
ex[0].set_shape(())
batch_size = 3
capacity = 30
batch = tf.train.batch_join(example_list, batch_size=batch_size, capacity=capacity)
with tf.Session().as_default() as sess:
tf.global_variables_initializer().run()
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
try:
# dry run, left out of timing
sess.run(batch)
start_time = time.time()
for it in range(5):
print(sess.run(batch))
finally:
duration = time.time() - start_time
print('duration: {0:4.2f}s'.format(duration))
coord.request_stop()
coord.join(threads)