代码之家  ›  专栏  ›  技术社区  ›  Radu Gancea

Postgresql运算符性能:列表与子查询

  •  12
  • Radu Gancea  · 技术社区  · 8 年前

    对于大约700个ID的列表,查询性能比传递返回这些700 ID的子查询慢20倍以上。应该是相反的。

    e、 g.(第一次查询时间不到400毫秒,后一次查询时间为9600毫秒)

    select date_trunc('month', day) as month, sum(total)
    from table_x
    where y_id in (select id from table_y where prop = 'xyz') 
    and day between '2015-11-05' and '2016-11-04' 
    group by month
    

    在我的机器上比直接传递数组快20倍:

    select date_trunc('month', day) as month, sum(total) 
    from table_x
    where y_id in (1625, 1871, ..., 1640, 1643, 13291, 1458, 13304, 1407, 1765) 
    and day between '2015-11-05' and '2016-11-04' 
    group by month 
    

    您知道问题是什么,或者如何优化并获得相同的性能吗?

    2 回复  |  直到 8 年前
        1
  •  16
  •   Clodoaldo Neto    8 年前

    区别在于简单过滤器与哈希连接:

    explain analyze
    select i 
    from t
    where i in (500,501,502,503,504,505,506,507,508,509,510,511,512,513,514,515,516,517,518,519,520,521,522,523,524,525,526,527,528,529,530,531,532,533,534,535,536,537,538,539,540,541,542,543,544,545,546,547,548,549,550,551,552,553,554,555,556,557,558,559,560,561,562,563,564,565,566,567,568,569,570,571,572,573,574,575,576,577,578,579,580,581,582,583,584,585,586,587,588,589,590,591,592,593,594,595,596,597,598,599,600);
                                                  QUERY PLAN                                                                                                                                                                                                                        
    ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
     Seq Scan on t  (cost=0.00..140675.00 rows=101 width=4) (actual time=0.648..1074.567 rows=101 loops=1)
       Filter: (i = ANY ('{500,501,502,503,504,505,506,507,508,509,510,511,512,513,514,515,516,517,518,519,520,521,522,523,524,525,526,527,528,529,530,531,532,533,534,535,536,537,538,539,540,541,542,543,544,545,546,547,548,549,550,551,552,553,554,555,556,557,558,559,560,561,562,563,564,565,566,567,568,569,570,571,572,573,574,575,576,577,578,579,580,581,582,583,584,585,586,587,588,589,590,591,592,593,594,595,596,597,598,599,600}'::integer[]))
       Rows Removed by Filter: 999899
     Planning time: 0.170 ms
     Execution time: 1074.624 ms
    
    explain analyze
    select i
    from t
    where i in (select i from r);
                                                        QUERY PLAN                                                     
    -------------------------------------------------------------------------------------------------------------------
     Hash Semi Join  (cost=3.27..17054.40 rows=101 width=4) (actual time=0.382..240.389 rows=101 loops=1)
       Hash Cond: (t.i = r.i)
       ->  Seq Scan on t  (cost=0.00..14425.00 rows=1000000 width=4) (actual time=0.030..117.193 rows=1000000 loops=1)
       ->  Hash  (cost=2.01..2.01 rows=101 width=4) (actual time=0.074..0.074 rows=101 loops=1)
             Buckets: 1024  Batches: 1  Memory Usage: 12kB
             ->  Seq Scan on r  (cost=0.00..2.01 rows=101 width=4) (actual time=0.010..0.035 rows=101 loops=1)
     Planning time: 0.245 ms
     Execution time: 240.448 ms
    

    要获得相同的性能,请加入阵列:

    explain analyze
    select i
    from
        t
        inner join
        unnest(
            array[500,501,502,503,504,505,506,507,508,509,510,511,512,513,514,515,516,517,518,519,520,521,522,523,524,525,526,527,528,529,530,531,532,533,534,535,536,537,538,539,540,541,542,543,544,545,546,547,548,549,550,551,552,553,554,555,556,557,558,559,560,561,562,563,564,565,566,567,568,569,570,571,572,573,574,575,576,577,578,579,580,581,582,583,584,585,586,587,588,589,590,591,592,593,594,595,596,597,598,599,600]::int[]
        ) u (i) using (i)
    ;
                                                          QUERY PLAN                                                       
    -----------------------------------------------------------------------------------------------------------------------
     Hash Join  (cost=2.25..18178.25 rows=100 width=4) (actual time=0.267..243.768 rows=101 loops=1)
       Hash Cond: (t.i = u.i)
       ->  Seq Scan on t  (cost=0.00..14425.00 rows=1000000 width=4) (actual time=0.022..118.709 rows=1000000 loops=1)
       ->  Hash  (cost=1.00..1.00 rows=100 width=4) (actual time=0.063..0.063 rows=101 loops=1)
             Buckets: 1024  Batches: 1  Memory Usage: 12kB
             ->  Function Scan on unnest u  (cost=0.00..1.00 rows=100 width=4) (actual time=0.028..0.041 rows=101 loops=1)
     Planning time: 0.172 ms
     Execution time: 243.816 ms
    

    或使用 values 语法:

    explain analyze
    select i 
    from t
    where i = any (values (500),(501),(502),(503),(504),(505),(506),(507),(508),(509),(510),(511),(512),(513),(514),(515),(516),(517),(518),(519),(520),(521),(522),(523),(524),(525),(526),(527),(528),(529),(530),(531),(532),(533),(534),(535),(536),(537),(538),(539),(540),(541),(542),(543),(544),(545),(546),(547),(548),(549),(550),(551),(552),(553),(554),(555),(556),(557),(558),(559),(560),(561),(562),(563),(564),(565),(566),(567),(568),(569),(570),(571),(572),(573),(574),(575),(576),(577),(578),(579),(580),(581),(582),(583),(584),(585),(586),(587),(588),(589),(590),(591),(592),(593),(594),(595),(596),(597),(598),(599),(600))
    ;
                                                          QUERY PLAN                                                       
    -----------------------------------------------------------------------------------------------------------------------
     Hash Semi Join  (cost=2.53..17053.65 rows=101 width=4) (actual time=0.279..239.888 rows=101 loops=1)
       Hash Cond: (t.i = "*VALUES*".column1)
       ->  Seq Scan on t  (cost=0.00..14425.00 rows=1000000 width=4) (actual time=0.022..117.199 rows=1000000 loops=1)
       ->  Hash  (cost=1.26..1.26 rows=101 width=4) (actual time=0.059..0.059 rows=101 loops=1)
             Buckets: 1024  Batches: 1  Memory Usage: 12kB
             ->  Values Scan on "*VALUES*"  (cost=0.00..1.26 rows=101 width=4) (actual time=0.002..0.027 rows=101 loops=1)
     Planning time: 0.242 ms
     Execution time: 239.933 ms
    
        2
  •  2
  •   NiVeR    8 年前

    尝试将临界线更改为:

    where y_id = any (values (1625, 1871, ..., 1640, 1643, 13291, 1458, 13304, 1407, 1765) )