我想你想要的功能是
dplyr::bind_cols()
. 注意,这不适用于矩阵,因此您还必须使用
dplyr::as_tibble()
.
如果您的目标是将事物保持为tibble,请使用
dplyr
等等,我认为这是最简单的方法:
PredictionData %>% bind_cols(as_tibble(predict(rq_fit, newdata = .)))
然而,有人可能会认为这有点过于“从内到外”而不是“从左到右”的习惯用法
接近。所以,也许你想要更像
rq_fit %>%
predict(newdata = PredictionData) %>%
as_tibble() %>%
bind_cols(PredictionData) %>%
select(x, everything())
两种方法都给出以下输出:
# A tibble: 10 x 10
x `tau= 0.1` `tau= 0.2` `tau= 0.3` `tau= 0.4` `tau= 0.5` `tau= 0.6` `tau= 0.7` `tau= 0.8` `tau= 0.9`
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.0000000 -1.5755585 -0.8082654 -0.3133431 -0.1952309 0.058074887 0.44450275 0.6679990 0.8802325 1.650510
2 0.1111111 -1.4767907 -0.7915847 -0.3517192 -0.1909820 0.041473996 0.39935461 0.6132367 0.8618259 1.618999
3 0.2222222 -1.3780228 -0.7749040 -0.3900952 -0.1867331 0.024873104 0.35420647 0.5584744 0.8434194 1.587488
4 0.3333333 -1.2792549 -0.7582233 -0.4284712 -0.1824842 0.008272213 0.30905833 0.5037121 0.8250128 1.555976
5 0.4444444 -1.1804871 -0.7415425 -0.4668472 -0.1782353 -0.008328679 0.26391019 0.4489498 0.8066063 1.524465
6 0.5555556 -1.0817192 -0.7248618 -0.5052233 -0.1739865 -0.024929570 0.21876205 0.3941875 0.7881997 1.492954
7 0.6666667 -0.9829513 -0.7081811 -0.5435993 -0.1697376 -0.041530462 0.17361391 0.3394252 0.7697932 1.461442
8 0.7777778 -0.8841835 -0.6915004 -0.5819753 -0.1654887 -0.058131353 0.12846577 0.2846630 0.7513866 1.429931
9 0.8888889 -0.7854156 -0.6748196 -0.6203513 -0.1612398 -0.074732245 0.08331763 0.2299007 0.7329801 1.398419
10 1.0000000 -0.6866477 -0.6581389 -0.6587274 -0.1569909 -0.091333136 0.03816949 0.1751384 0.7145735 1.366908
数据
set.seed(1234)
library(dplyr)
tibble(x = runif(100)) %>%
mutate(y = rnorm(n())) ->
EstimationData
library(quantreg)
taus <- (1:9)/10
rq_fit <- rq(y ~ x, tau = taus, data = EstimationData)
PredictionData <- tibble(x = seq(0, 1, len = 10))