import tensorflow as tf
from keras.layers import Input, Dense
from keras.models import Model, Sequential
from keras.layers import Conv2D, Concatenate
from keras.utils.vis_utils import plot_model
if __name__ == '__main__':
imgRows = imgCols = 28
print ("ImgRow and imgCols " , imgRows, imgCols)
inputLayer = Input(shape=( 1,28,28))
conv1 = Conv2D(64,(3,3),strides=1, padding="same", activation='relu') (inputLayer)
#Residual 1
skip = Conv2D(128, (1,1), strides=1, padding="same", activation='relu') (conv1)
conv1 = Conv2D(128, (3,3), strides=3, padding="same", activation='relu') (skip)
conv1 = Conv2D(128, (3,3), strides=3, padding="same", activation='relu') (conv1)
r1= Concatenate([skip, conv1])
#residual 2
conv1 = Conv2D(128, (3,3), strides=3, padding="same", activation='relu') (r1)
conv1 = Conv2D(128, (3,3), strides=3, padding="same", activation='relu') (conv1)
conv1= Concatenate([r1, conv1])
# Residual 3
skip = Conv2D(256, (1,1), strides=1, padding="same", activation='relu') (conv1)
conv1 = Conv2D(256, (3,3), strides=3, padding="same", activation='relu') (conv1)
conv1 = Conv2D(256, (3,3), strides=3, padding="same", activation='relu') (conv1)
conv1= Concatenate([skip, conv1])
out = Conv2D(1, (1,1), strides=1, padding="same", activation='sigmoid') (conv1)
#model = Sequential()
#model.add (inputLayer)
#model.add ( conv1)
model = Model(input=inputLayer, output=conv1)
model.compile(optimizer=Nadam(lr=1e-5), loss="mean_square_error")
plot_model (model, to_file="./keestu_model.png", show_shapes=True)
我得到以下错误:
错误消息是:
ValueError: Layer conv2d_5 was called with an input that isn't a
symbolic tensor. Received type: <class 'keras.layers.merge.Concatenate'>.
Full input: [<keras.layers.merge.Concatenate object at 0x7fd543841590>].
All inputs to the layer should be tensors.
问题
错误消息对我来说非常清楚,第5层希望它的输入是张量对象,而不是串联对象。但是我怎样才能修复它呢?