代码之家  ›  专栏  ›  技术社区  ›  Jon

基于新图像的路缘石模型预测误差

  •  0
  • Jon  · 技术社区  · 7 年前

    在Keras中建立了图像分类模型,并在调用 predict predict_classes 我收到一个错误- expected conv2d_1_input to have 4 dimensions, but got array with shape (150, 150, 3)

    这是我的模型:

    model = models.Sequential()
    
    model.add(layers.Conv2D(32, (3, 3), activation="relu", input_shape=(150, 150, 3)))
    model.add(layers.MaxPooling2D((2, 2)))
    model.add(layers.Conv2D(64, (3, 3), activation="relu"))
    model.add(layers.MaxPooling2D((2, 2)))
    model.add(layers.Conv2D(128, (3, 3), activation="relu", input_shape=(150, 150, 3)))
    model.add(layers.MaxPooling2D((2, 2)))
    model.add(layers.Conv2D(128, (3, 3), activation="relu"))
    model.add(layers.MaxPooling2D((2, 2)))
    model.add(layers.Flatten())
    model.add(layers.Dense(512, activation="relu"))
    model.add(layers.Dense(5, activation="softmax"))
    

    以及模型摘要:

    _________________________________________________________________
    Layer (type)                 Output Shape              Param #   
    =================================================================
    conv2d_1 (Conv2D)            (None, 148, 148, 32)      896       
    _________________________________________________________________
    max_pooling2d_1 (MaxPooling2 (None, 74, 74, 32)        0         
    _________________________________________________________________
    conv2d_2 (Conv2D)            (None, 72, 72, 64)        18496     
    _________________________________________________________________
    max_pooling2d_2 (MaxPooling2 (None, 36, 36, 64)        0         
    _________________________________________________________________
    conv2d_3 (Conv2D)            (None, 34, 34, 128)       73856     
    _________________________________________________________________
    max_pooling2d_3 (MaxPooling2 (None, 17, 17, 128)       0         
    _________________________________________________________________
    conv2d_4 (Conv2D)            (None, 15, 15, 128)       147584    
    _________________________________________________________________
    max_pooling2d_4 (MaxPooling2 (None, 7, 7, 128)         0         
    _________________________________________________________________
    flatten_1 (Flatten)          (None, 6272)              0         
    _________________________________________________________________
    dense_1 (Dense)              (None, 512)               3211776   
    _________________________________________________________________
    dense_2 (Dense)              (None, 5)                 2565      
    =================================================================
    Total params: 3,455,173
    Trainable params: 3,455,173
    Non-trainable params: 0
    _________________________________________________________________
    

    下面是我用来预测模型的代码:

    img = load_img('rose.jpg', target_size=(150, 150, 3))
    x = img_to_array(img)
    x = np.reshape(x, (150, 150, 3))
    model.predict(x)
    

    有或没有 np.reshape 我还是觉得形状不对。

    我是否不正确地重塑了图像?或者我需要调整我的模型以便能够预测?

    0 回复  |  直到 7 年前