我一直在努力优化一个Spark脚本,但它仍然慢得让人无法忍受(600MB的数据需要24分钟)。完整的代码是
here
但我会尽量在这个问题上总结一下,如果你有什么办法可以加快速度,请告诉我。
硬件
local
和
local[*]
但让我们集中精力
数据
:2个NetCDF文件(列数据);单机=>无HDF
分析数据
:将所有列读取为
Arrays
ss.parallelize
+
zip
DataFrame
行动
:
show()
summary(min, max, mean, stddev)
,
write
,
groupBy()
,
我是怎么跑的
:
sbt assembly
去创造一个不包括火花本身的大罐子+
spark-submit --master "local" --conf "spark.sql.shuffle.partitions=4" --driver-memory "10g" target/scala-2.11/spark-assembly-1.0.jar --partitions 4 --input ${input} --slice ${slice}
我试过的优化
-
-
不同的分区号=>1似乎会冻结,超过4似乎会减慢速度(遵守numPartitions=~4x个核心数和numPartitions=~data/128MB的规则)
-
将所有数据作为Scala数组读取到驱动程序->转置->单个RDD(与压缩RDD相反)=>速度较慢
-
在相同的列和numPartitions上重新分配刚刚读取的数据帧,这样连接就不会触发shuffle
-
缓存重新使用的数据帧
代码
private def readDataRDD(path: String, ss: SparkSession, dims: List[String], createIndex: Boolean, numPartitions: Int): DataFrame = {
val file: NetcdfFile = NetcdfFile.open(path)
val vars: util.List[Variable] = file.getVariables
// split variables into dimensions and regular data
val dimVars: Map[String, Variable] = vars.filter(v => dims.contains(v.getShortName)).map(v => v.getShortName -> v).toMap
val colVars: Map[String, Variable] = vars.filter(v => !dims.contains(v.getShortName)).map(v => v.getShortName -> v).toMap
val lon: Array[Float] = readVariable(dimVars(dims(0)))
val lat: Array[Float] = readVariable(dimVars(dims(1)))
val tim: Array[Float] = readVariable(dimVars(dims(2)))
val dimsCartesian: Array[ListBuffer[_]] = cartesian(lon, lat, tim)
// create the rdd with the dimensions (by transposing the cartesian product)
var tempRDD: RDD[ListBuffer[_]] = ss.sparkContext.parallelize(dimsCartesian, numPartitions)
// gather the names of the columns (in order)
val names: ListBuffer[String] = ListBuffer(dims: _*)
for (col <- colVars) {
tempRDD = tempRDD.zip(ss.sparkContext.parallelize(readVariable(col._2), numPartitions)).map(t => t._1 :+ t._2)
names.add(col._1)
}
if (createIndex) {
tempRDD = tempRDD.zipWithIndex().map(t => t._1 :+ t._2.asInstanceOf[Float])
names.add("index")
}
val finalRDD: RDD[Row] = tempRDD.map(Row.fromSeq(_))
val df: DataFrame = ss.createDataFrame(finalRDD, StructType(names.map(StructField(_, FloatType, nullable = false))))
val floatTimeToString = udf((time: Float) => {
val udunits = String.valueOf(time.asInstanceOf[Int]) + " " + UNITS
CalendarDate.parseUdunits(CALENDAR, udunits).toString.substring(0, 10)
})
df.withColumn("time", floatTimeToString(df("time")))
}
def main(args: Array[String]): Unit = {
val spark: SparkSession = SparkSession.builder
.appName("Spark Pipeline")
.getOrCreate()
val dimensions: List[String] = List("longitude", "latitude", "time")
val numberPartitions = options('partitions).asInstanceOf[Int]
val df1: DataFrame = readDataRDD(options('input) + "data1.nc", spark, dimensions, createIndex = true, numberPartitions)
.repartition(numberPartitions, col("longitude"), col("latitude"), col("time"))
val df2: DataFrame = readDataRDD(options('input) + "data2.nc", spark, dimensions, createIndex = false, numberPartitions)
.repartition(numberPartitions, col("longitude"), col("latitude"), col("time"))
var df: DataFrame = df1.join(df2, dimensions, "inner").cache()
println(df.show())
val slice: Array[String] = options('slice).asInstanceOf[String].split(":")
df = df.filter(df("index") >= slice(0).toFloat && df("index") < slice(1).toFloat)
.filter(df("tg") =!= -99.99f && df("pp") =!= -999.9f && df("rr") =!= -999.9f)
.drop("pp_stderr", "rr_stderr", "index")
.withColumn("abs_diff", abs(df("tx") - df("tn"))).cache()
val df_agg = df.drop("longitude", "latitude", "time")
.summary("min", "max", "mean", "stddev")
.coalesce(1)
.write
.option("header", "true")
.csv(options('output) + "agg")
val computeYearMonth = udf((time: String) => {
time.substring(0, 7).replace("-", "")
})
df = df.withColumn("year_month", computeYearMonth(df("time")))
val columnsToAgg: Array[String] = Array("tg", "tn", "tx", "pp", "rr")
val groupOn: Seq[String] = Seq("longitude", "latitude", "year_month")
val grouped_df: DataFrame = df.groupBy(groupOn.head, groupOn.drop(1): _*)
.agg(columnsToAgg.map(column => column -> "mean").toMap)
.drop("longitude", "latitude", "year_month")
val columnsToSum: Array[String] = Array("tg_mean", "tn_mean", "tx_mean", "rr_mean", "pp_mean")
grouped_df
.agg(columnsToSum.map(column => column -> "sum").toMap)
.coalesce(1)
.write
.option("header", "true")
.csv(options('output) + "grouped")
spark.stop()
}
有什么办法可以进一步加快速度吗?
笔记
-
地方的
24分钟;
local[32]
-
是的,Spark不是为一台机器构建的,但是java和pandas中相同的操作(单线程)分别需要10秒和40秒;差别很大
-
当前无法查看web界面以可视化任务
-