我是ml.net的初学者,我的数据有点问题。当我将它们放入mlcontext.fit(…);这是我收到的错误:
Column 'Temperature' has values of I4which is not the same as earlier observed type of R4.
以下是我的代码:
try
{
var mlContext = new MLContext();
var reader = mlContext.Data.CreateTextReader<TrainData>(separatorChar: ',', hasHeader: false);
var trainData = _context.Datas.Last();
IDataView trainingdataView = reader.Read(Path.Combine(hostingEnvironment.WebRootPath, "data010220192341.txt"));
var pipeline = mlContext.Transforms.Conversion.MapValueToKey("Delay")
.Append(mlContext.Transforms.Categorical.OneHotEncoding("StationDepart"))
.Append(mlContext.Transforms.Categorical.OneHotEncoding("StationArrival"))
.Append(mlContext.Transforms.Categorical.OneHotEncoding("Day"))
.Append(mlContext.Transforms.Categorical.OneHotEncoding("Train"))
.Append(mlContext.Transforms.Categorical.OneHotEncoding("WeatherText"))
.Append(mlContext.Transforms.Categorical.OneHotEncoding("HasPrecipitation"))
.Append(mlContext.Transforms.Categorical.OneHotEncoding("PrecipitationType"))
.Append(mlContext.Transforms.Concatenate("Features", "StationDepart", "StationArrival", "Day", "Train", "WeatherText", "Temperature", "Humidity", "HasPrecipitation", "PrecipitationType", "Time"))
.Append(mlContext.MulticlassClassification.Trainers.StochasticDualCoordinateAscent(labelColumn: "Delay", featureColumn: "Features"))
.Append(mlContext.Transforms.Conversion.MapKeyToValue("PredictedTime"));
var model = pipeline.Fit(trainingdataView);
var prediction = model.CreatePredictionEngine<TrainData, TrainPrediction>(mlContext).Predict(
new TrainData()
{
StationDepart = "Charleroi-Sud",
StationArrival = "Mons",
Day = "Friday",
Train = "BE.NMBS.IC3825",
WeatherText = "Partly cloudy",
Temperature = -1,
Humidity=0,
HasPrecipitation = false,
PrecipitationType=null,
Time=0444
});
return prediction.PredictedTime.ToString();
}
catch (Exception e)
{
return e.Message;
}
所以当我得到一个文本文件上的数据之后,我对字符串列进行编码,在我尝试训练模型之后,但此时我收到了错误。
我的数据是:
Charleroi Sud,Mons,Thurday,Be.NMBS.IC3831,部分
晴天,-2,0,假,,1044,0
Charleroi Sud,Mons,Thurday,Be.nmbs.ic932,多云,-2,0,假,,1112,0
Charleroi Sud,Mons,Thurday,be.nmbs.ic3832,多云,-1,0,假,,1144,0
Charleroi Sud,Mons,Thurday,Be.nmbs.ic933,多云,-1,0,假,,1212,0
Charleroi Sud,Mons,Thurday,be.nmbs.ic3842,多云,-1,0,假,,2144,0
Charleroi Sud,Mons,Thurday,Be.nmbs.ic943,多云,-1,0,假,,2212,0
Charleroi Sud,Mons,Thurday,Be.nmbs.ic3843,多云,-1,0,假,,2247,0
Charleroi Sud,Mons,Friday,Be.nmbs.ic3825,部分多云,-1,0,假,,0444,0
Charleroi Sud,Mons,Friday,Be.nmbs.ic3826,多云,-1,0,假,,0544,0
Charleroi Sud,Mons,Friday,Be.nmbs.ic927,多云,-1,0,假,,0612,0
如你所见,数据之间的每一个“,”和温度是一个整数。
在特兰达达,就像这样:
public class TrainData
{
[LoadColumn(0)]
public string StationDepart { get; set; }
[LoadColumn(1)]
public string StationArrival { get; set; }
[LoadColumn(2)]
public string Day { get; set; }
[LoadColumn(3)]
public string Train { get; set; }
[LoadColumn(4)]
public string WeatherText { get; set; }
[LoadColumn(5)]
public int Temperature { get; set; }
[LoadColumn(6)]
public int Humidity { get; set; }
[LoadColumn(7)]
public bool HasPrecipitation { get; set; }
[LoadColumn(8)]
public string PrecipitationType { get; set; }
[LoadColumn(9)]
public int Time { get; set; }
[LoadColumn(10)]
public int Delay { get; set; }
}