SQL数据库中表中的行没有固有的顺序。因此,不能像在r中那样分配值的“向量”。但是,可以稍微修改查询:
library(dplyr)
library(DBI)
con <- DBI::dbConnect(RSQLite::SQLite(), path = ":memory:")
copy_to(con, iris[c(1,2,51),],"iris")
用聚合数据创建单独的表
DBI::dbSendQuery(con, "CREATE TABLE new_table AS
SELECT Species, sum(`Sepal.Width`) as new_col FROM iris GROUP BY Species")
tbl(con,"new_table")
#> # Source: table<new_table> [?? x 2]
#> # Database: sqlite 3.22.0 []
#> Species new_col
#> <chr> <dbl>
#> 1 setosa 6.5
#> 2 versicolor 3.2
在旧表中创建新列
DBI::dbSendQuery(con, "ALTER TABLE iris ADD COLUMN new_col DOUBLE")
使用相关子查询将数据移动到原始表
DBI::dbSendQuery(con, "UPDATE iris SET new_col = (SELECT new_col FROM new_table t2
WHERE iris.Species = t2.Species)")
tbl(con,"iris")
#> # Source: table<iris> [?? x 6]
#> # Database: sqlite 3.22.0 []
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species new_col
#> <dbl> <dbl> <dbl> <dbl> <chr> <dbl>
#> 1 5.1 3.5 1.4 0.2 setosa 6.5
#> 2 4.9 3 1.4 0.2 setosa 6.5
#> 3 7 3.2 4.7 1.4 versicolor 3.2
如果有多个计算列,可以使用
UPDATE ... SET (c1, c2, ...) = (...)
这样地:
library(dplyr)
library(dbplyr)
library(DBI)
con <- DBI::dbConnect(RSQLite::SQLite(), path = ":memory:")
copy_to(con, iris[c(1,2,51),],"iris")
DBI::dbSendQuery(con, "CREATE TABLE aggs AS
SELECT Species,
SUM(`Sepal.Width`) AS sw_sum,
AVG(`Sepal.Width`) AS sw_avg
FROM iris GROUP BY Species")
tbl(con,"aggs")
#> # Source: table<aggs> [?? x 3]
#> # Database: sqlite 3.22.0 []
#> Species sw_sum sw_avg
#> <chr> <dbl> <dbl>
#> 1 setosa 6.5 3.25
#> 2 versicolor 3.2 3.2
DBI::dbSendQuery(con, "ALTER TABLE iris ADD COLUMN sw_sum DOUBLE")
DBI::dbSendQuery(con, "ALTER TABLE iris ADD COLUMN sw_avg DOUBLE")
DBI::dbSendQuery(con, "UPDATE iris
SET (sw_sum, sw_avg) = (SELECT sw_sum, sw_avg
FROM aggs WHERE iris.Species = aggs.Species)")
tbl(con,"iris")
#> # Source: table<iris> [?? x 7]
#> # Database: sqlite 3.22.0 []
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species sw_sum sw_avg
#> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl>
#> 1 5.1 3.5 1.4 0.2 setosa 6.5 3.25
#> 2 4.9 3 1.4 0.2 setosa 6.5 3.25
#> 3 7 3.2 4.7 1.4 versico⦠3.2 3.2
这也适用于postgres,但可能不适用于sql server。
实际上,在这种情况下不需要中间表:
library(dplyr)
library(dbplyr)
library(DBI)
con <- DBI::dbConnect(RSQLite::SQLite(), path = ":memory:")
copy_to(con, iris[c(1,2,51),],"iris")
DBI::dbSendQuery(con, "ALTER TABLE iris ADD COLUMN sw_sum DOUBLE")
DBI::dbSendQuery(con, "ALTER TABLE iris ADD COLUMN sw_avg DOUBLE")
DBI::dbSendQuery(con, "UPDATE iris
SET (sw_sum, sw_avg) =
(SELECT sw_sum, sw_avg FROM
(SELECT Species,
SUM(`Sepal.Width`) AS sw_sum,
AVG(`Sepal.Width`) AS sw_avg
FROM iris GROUP BY Species) aggs
WHERE iris.Species = aggs.Species)")
tbl(con,"iris")
#> # Source: table<iris> [?? x 7]
#> # Database: sqlite 3.22.0 []
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species sw_sum sw_avg
#> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl>
#> 1 5.1 3.5 1.4 0.2 setosa 6.5 3.25
#> 2 4.9 3 1.4 0.2 setosa 6.5 3.25
#> 3 7 3.2 4.7 1.4 versico⦠3.2 3.2
不过,中间表在其他情况下可能会有所帮助。例如,在链接问题中使用r创建时。