我有三个特点:
feature_one -> number of tokens in the given sentence.
feature_two -> number of verbs in the given sentence.
feature_three -> number of tokens - number of verbs in the given sentence.
(feature_one - feature_two)
我写了自定义变压器
feature_one
和
feature_two
feature_three
这样我就可以使用
功能1
功能二
通过以下方式运行管道:
Pipeline([
#input to feature_one and feature_two is list of sentences.
("feature", FeatureUnion([
("feature_one", feature_one_transformer()),
("feature_two", feature_two_transformer())
])),
("feature_three", feature_three_transformer())
])
feature\u one\u变压器:
class feature_one_transformer(BaseEstimator, TransformerMixin):
def __init__(self):
pass
def fit(self, x, y):
return self
def transform(self, sentence_list):
number_of_tokens_in_sentence_list = list()
for sentence in sentence_list:
number_of_tokens = compute_number_of_tokens
number_of_tokens_in_sentence_lista.append(number_of_tokens)
return pandas.DataFrame(number_of_tokens_in_sentence_list)
class feature_two_transformer(BaseEstimator, TransformerMixin):
def __init__(self):
pass
def fit(self, x, y):
return self
def transform(self, sentence_list):
number_of_verbs_in_sentence_list = list()
for sentence in sentence_list:
number_of_verbs = compute_number_of_verbs_in_sentence
number_of_verbs_in_sentence_lista.append(number_of_verbs)
return pandas.DataFrame(number_of_verbs_in_sentence_list)
有人能告诉我应该如何为feature\u三编写自定义transformer,以及如何在管道中使用,以便使用feature\u一和feature\u二个transformer的结果吗。非常感谢。