_source.time
我在尝试执行计算(订单/日期计数)时一直遇到一个问题,该计算总是产生一个整体值,而不是分组(日期)的等效值。
问题的存在是因为字段
leads_T_orders
和
leads_F_orders
leads_T_conv
和
leads_F_conv
我想做
orders / date_count
_source.time(源时间)
date_count
是以下各项的总和:
leads_TRUE
leads_FALSE
和
no_claim_event
orders
leads\u T\u订单
,
leads\u F\u订单
date\u计数
对应方
我哪里做错了?
gn %>%
group_by(`_source.time`) %>%
summarize(
leads_TRUE = sum(lead == TRUE),
leads_FALSE = sum(lead == FALSE),
no_claim_event = sum(lead == "no-claim-event"),
leads_T_orders = sum(gn$orders[gn$lead == TRUE]),
leads_F_orders = sum(gn$orders[gn$lead == FALSE]),
date_count = sum(leads_TRUE + leads_FALSE + no_claim_event), # Equal to total number of chats occurring each day.
leads_T_conv = sum(leads_T_orders / leads_TRUE),
leads_F_conv = sum(leads_F_orders / leads_FALSE),
missing_claim_conv = sum(orders / nrow(gn[gn$lead == "no-claim-event", ])),
overall_conv = sum(leads_T_conv + leads_F_conv + missing_claim_conv)
) %>%
ungroup()
它产生了:
# A tibble: 64 x 11
`_source.time` leads_TRUE leads_FALSE no_claim_event leads_T_orders leads_F_orders date_count leads_T_conv leads_F_conv
<date> <int> <int> <int> <int> <int> <int> <dbl> <dbl>
1 2018-05-14 8 86 9 73 216 103 0.00363 0.00181
2 2018-05-15 29 71 0 73 216 100 0.00242 0.00121
3 2018-05-16 27 82 0 73 216 109 0.00545 0.00272
4 2018-05-17 19 1 1 73 216 21 0.00121 0.000604
请注意,所讨论的数据帧包含私有数据,因此我无法提供
dput()
但这个问题更多的是关于
group_by()