我正在努力使这三个工具在谷歌云平台上协同工作。
所以我使用dataproc创建了一个带有初始化脚本的spark集群来安装cassandra和jupyter。
当我ssh集群并启动“pyspark--packages datastax:spark cassandra connector:2.3.0-s_2.11”时
一切似乎都很好
编辑:事实上,火花外壳没问题,但PySark没问题。
我不知道如何用pyspark内核和cassandra连接器启动jupyter。
编辑:这个问题似乎比Jupyter更与pyspark有关。
我试图修改kernel.json
{
"argv": [
"bash",
"-c",
"PYSPARK_DRIVER_PYTHON=ipython PYSPARK_DRIVER_PYTHON_OPTS='kernel -f {connection_file}' pyspark"],
"env": {
"PYSPARK_SUBMIT_ARGS": "--master local[*] pyspark-shell --packages datastax:spark-cassandra-connector:2.3.0-s_2.11"
},
"display_name": "PySpark",
"language": "python"
}
但这似乎行不通。在Jupyter的时候,我找不到任何关于Cassandra的信息,也有一些例外,比如:
java.lang.ClassNotFoundException:未能找到数据源:pyspark.sql.cassandra。
(我尝试了其他pyspark提交参数,并在pyspark驱动程序python选项中添加了--package,但没有任何效果)
编辑:当我启动pyspark时,我有一些警告。我看不到任何与我的问题相关的信息,但我可能是错的,所以下面是PySark的起始信息:
myuserhome@spark-cluster-m:~$ pyspark --packages com.datastax.spark:spark-cassandra-connector_2.11:2.3.0
Python 2.7.9 (default, Jun 29 2016, 13:08:31)
[GCC 4.9.2] on linux2
Type "help", "copyright", "credits" or "license" for more information.
Ivy Default Cache set to: /home/myuserhome/.ivy2/cache
The jars for the packages stored in: /home/myuserhome/.ivy2/jars
:: loading settings :: url = jar:file:/usr/lib/spark/jars/ivy-2.4.0.jar!/org/apache/ivy/core/settings/ivysettings.xml
com.datastax.spark#spark-cassandra-connector_2.11 added as a dependency
:: resolving dependencies :: org.apache.spark#spark-submit-parent;1.0
confs: [default]
found com.datastax.spark#spark-cassandra-connector_2.11;2.3.0 in central
found com.twitter#jsr166e;1.1.0 in central
found commons-beanutils#commons-beanutils;1.9.3 in central
found commons-collections#commons-collections;3.2.2 in central
found joda-time#joda-time;2.3 in central
found org.joda#joda-convert;1.2 in central
found io.netty#netty-all;4.0.33.Final in central
found org.scala-lang#scala-reflect;2.11.8 in central
:: resolution report :: resolve 2615ms :: artifacts dl 86ms
:: modules in use:
com.datastax.spark#spark-cassandra-connector_2.11;2.3.0 from central in [default]
com.twitter#jsr166e;1.1.0 from central in [default]
commons-beanutils#commons-beanutils;1.9.3 from central in [default]
commons-collections#commons-collections;3.2.2 from central in [default]
io.netty#netty-all;4.0.33.Final from central in [default]
joda-time#joda-time;2.3 from central in [default]
org.joda#joda-convert;1.2 from central in [default]
org.scala-lang#scala-reflect;2.11.8 from central in [default]
---------------------------------------------------------------------
| | modules || artifacts |
| conf | number| search|dwnlded|evicted|| number|dwnlded|
---------------------------------------------------------------------
| default | 8 | 0 | 0 | 0 || 8 | 0 |
---------------------------------------------------------------------
:: retrieving :: org.apache.spark#spark-submit-parent
confs: [default]
0 artifacts copied, 8 already retrieved (0kB/76ms)
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
18/06/17 11:08:22 WARN org.apache.hadoop.hdfs.DataStreamer: Caught exception
java.lang.InterruptedException
at java.lang.Object.wait(Native Method)
at java.lang.Thread.join(Thread.java:1252)
at java.lang.Thread.join(Thread.java:1326)
at org.apache.hadoop.hdfs.DataStreamer.closeResponder(DataStreamer.java:973)
at org.apache.hadoop.hdfs.DataStreamer.endBlock(DataStreamer.java:624)
at org.apache.hadoop.hdfs.DataStreamer.run(DataStreamer.java:801)
18/06/17 11:08:23 WARN org.apache.hadoop.hdfs.DataStreamer: Caught exception
java.lang.InterruptedException
at java.lang.Object.wait(Native Method)
at java.lang.Thread.join(Thread.java:1252)
at java.lang.Thread.join(Thread.java:1326)
at org.apache.hadoop.hdfs.DataStreamer.closeResponder(DataStreamer.java:973)
at org.apache.hadoop.hdfs.DataStreamer.endBlock(DataStreamer.java:624)
at org.apache.hadoop.hdfs.DataStreamer.run(DataStreamer.java:801)
18/06/17 11:08:23 WARN org.apache.spark.deploy.yarn.Client: Same path resource file:/home/myuserhome/.ivy2/jars/com.datastax.spark_spark-cassandra-connector_2.11-2.3.0.jar added multiple times to distributed cache.
18/06/17 11:08:23 WARN org.apache.spark.deploy.yarn.Client: Same path resource file:/home/myuserhome/.ivy2/jars/com.twitter_jsr166e-1.1.0.jar added multiple times to distributed cache.
18/06/17 11:08:23 WARN org.apache.spark.deploy.yarn.Client: Same path resource file:/home/myuserhome/.ivy2/jars/commons-beanutils_commons-beanutils-1.9.3.jar added multiple times to distributed cache.
18/06/17 11:08:23 WARN org.apache.spark.deploy.yarn.Client: Same path resource file:/home/myuserhome/.ivy2/jars/joda-time_joda-time-2.3.jar added multiple times to distributed cache.
18/06/17 11:08:23 WARN org.apache.spark.deploy.yarn.Client: Same path resource file:/home/myuserhome/.ivy2/jars/org.joda_joda-convert-1.2.jar added multiple times to distributed cache.
18/06/17 11:08:23 WARN org.apache.spark.deploy.yarn.Client: Same path resource file:/home/myuserhome/.ivy2/jars/io.netty_netty-all-4.0.33.Final.jar added multiple times to distributed cache.
18/06/17 11:08:23 WARN org.apache.spark.deploy.yarn.Client: Same path resource file:/home/myuserhome/.ivy2/jars/org.scala-lang_scala-reflect-2.11.8.jar added multiple times to distributed cache.
18/06/17 11:08:23 WARN org.apache.spark.deploy.yarn.Client: Same path resource file:/home/myuserhome/.ivy2/jars/commons-collections_commons-collections-3.2.2.jar added multiple times to distributed cache.
18/06/17 11:08:24 WARN org.apache.hadoop.hdfs.DataStreamer: Caught exception
java.lang.InterruptedException
at java.lang.Object.wait(Native Method)
at java.lang.Thread.join(Thread.java:1252)
at java.lang.Thread.join(Thread.java:1326)
at org.apache.hadoop.hdfs.DataStreamer.closeResponder(DataStreamer.java:973)
at org.apache.hadoop.hdfs.DataStreamer.endBlock(DataStreamer.java:624)
at org.apache.hadoop.hdfs.DataStreamer.run(DataStreamer.java:801)
ivysettings.xml file not found in HIVE_HOME or HIVE_CONF_DIR,/etc/hive/conf.dist/ivysettings.xml will be used
Welcome to
____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/__ / .__/\_,_/_/ /_/\_\ version 2.2.1
/_/
Using Python version 2.7.9 (default, Jun 29 2016 13:08:31)
SparkSession available as 'spark'.
>>> import org.apache.spark.sql.cassandra
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ImportError: No module named org.apache.spark.sql.cassandra
>>> import pyspark.sql.cassandra
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ImportError: No module named cassandra
编辑
关于在PySnk中尝试导入Java包,它只是我发现的一个最简单的命令,它引起了我所面临的异常。下面是另一个:
dfout.write.format("pyspark.sql.cassandra").mode("overwrite").option("confirm.truncate","true").option("spark.cassandra.connection.host","10.142.0.4").option("spark.cassandra.connection.port","9042").option("keyspace","uasb03").option("table","activite").save()
> "An error occurred while calling o113.save.\n: java.lang.ClassNotFoundException: Failed to find data source: pyspark.sql.cassandra.
我想我也试过org.apache.spark.sql.cassandra,但我必须再试一次:你的答案澄清了我盲目尝试的许多事情(master=local[*]也是一个尝试)。
关于集群:它是按照您的建议(对于jupyter)创建的,除了--properties。Jupyter工作正常,除了我不能使用Cassandra连接器。
编辑:根据Karthik Palaniappan的建议
现在,当我通过ssh使用pyspark时,它可以工作。但是对于Jupyter,我仍然有一个错误:
df=spark.read.format("csv").option("header","true").option("inferSchema","true").option("nullValue","NA").option("timestampFormat","ddMMMyyyy:HH:mm:ss").option("quote", "\"").option("delimiter", ";").option("mode","failfast").load("gs://tidy-centaur-b1/data/myfile.csv")
import pyspark.sql.functions as F
dfi = df.withColumn("id", F.monotonically_increasing_id()).withColumnRenamed("NUMANO", "numano")
dfi.createOrReplaceTempView("pathologie")
dfi.write.format("org.apache.spark.sql.cassandra").mode("overwrite").option("confirm.truncate","true").option("spark.cassandra.connection.host","10.142.0.3").option("spark.cassandra.connection.port","9042").option("keyspace","mykeyspace").option("table","mytable").save()
Py4JJavaError: An error occurred while calling o115.save.
: java.lang.ClassNotFoundException: Failed to find data source: org.apache.spark.sql.cassandra. Please find packages at http://spark.apache.org/third-party-projects.html
我按照您的建议重新创建了集群:
gcloud dataproc clusters create spark-cluster \
--async \
--project=tidy-centaur-205516 \
--region=us-east1 \
--zone=us-east1-b \
--bucket=tidy-centaur-b1 \
--image-version=1.2 \
--num-masters=1 \
--master-boot-disk-size=10GB \
--master-machine-type=n1-standard-2 \
--num-workers=2 \
--worker-boot-disk-size=10GB \
--worker-machine-type=n1-standard-1 \
--metadata 'CONDA_PACKAGES="numpy pandas scipy matplotlib",PIP_PACKAGES=pandas-gbq' \
--properties spark:spark.packages=com.datastax.spark:spark-cassandra-connector_2.11:2.3.0 \
--initialization-actions=gs://tidy-centaur-b1/init-cluster.sh,gs://dataproc-initialization-actions/jupyter2/jupyter2.sh
init-cluster.sh安装cassandra
我执行了jupyter notebook--generate config修改了pyspark kernel.json
{
"argv": [
"bash",
"-c",
"PYSPARK_DRIVER_PYTHON=ipython PYSPARK_DRIVER_PYTHON_OPTS='kernel -f {connection_file}' pyspark"],
"env": {
"PYSPARK_SUBMIT_ARGS": "pyspark-shell --packages com.datastax.spark:spark-cassandra-connector_2.11:2.3.0"
},
"display_name": "PySpark",
"language": "python"
}