例如,我有一个这样的数据集
test = spark.createDataFrame([
(0, 1, 5, "2018-06-03", "Region A"),
(1, 1, 2, "2018-06-04", "Region B"),
(2, 2, 1, "2018-06-03", "Region B"),
(3, 3, 1, "2018-06-01", "Region A"),
(3, 1, 3, "2018-06-05", "Region A"),
])\
.toDF("orderid", "customerid", "price", "transactiondate", "location")
test.show()
我可以通过
overall_stat = test.groupBy("customerid").agg(count("orderid"))\
.withColumnRenamed("count(orderid)", "overall_count")
temp_result = test.groupBy("customerid").pivot("location").agg(count("orderid")).na.fill(0).join(overall_stat, ["customerid"])
for field in temp_result.schema.fields:
if str(field.name) not in ['customerid', "overall_count", "overall_amount"]:
name = str(field.name)
temp_result = temp_result.withColumn(name, col(name)/col("overall_count"))
temp_result.show()
数据是这样的
现在,我想计算加权平均值
overall_count
,我该怎么做?
结果应该是
(0.66*3+1*1)/4
对于区域A,以及
(0.33*3+1*1)/4
对于区域B
我的想法:
当然可以通过将数据转换成python/panda然后进行一些计算来实现,但是在什么情况下应该使用Pyspark呢?
我可以得到一些像
temp_result.agg(sum(col("Region A") * col("overall_count")), sum(col("Region B")*col("overall_count"))).show()
但感觉不对,特别是如果有很多
region
数一数。