如何将condor命名为我的文件,如下所示:
元学习实验提交.py.e451863元学习实验提交.py.o444375
$(FILENAME).e$(CLUSTER)
$(FILENAME).e$(CLUSTER)
我试过了,但似乎不起作用。
e、 所以当我这样做的时候,它符合PBS的默认行为
qsub
?
我还想知道如何使slurm也匹配它,这将是完美的(所以所有三个集群都在工作)。
我试过:
#SBATCH --error="(filename).%j.%N.err"
但那没用
赏金
我想自动设置文件名而不需要硬编码。
相关:
对于上下文,这里是我当前的提交文件:
####################
#
# Experiments script
# Simple HTCondor submit description file
#
#
# chmod a+x test_condor.py
# chmod a+x experiments_meta_model_optimization.py
# chmod a+x meta_learning_experiments_submission.py
# chmod a+x download_miniImagenet.py
# chmod a+x ~/meta-learning-lstm-pytorch/main.py
# chmod a+x /home/miranda9/automl-meta-learning/automl-proj/meta_learning/datasets/rand_fc_nn_vec_mu_ls_gen.py
# chmod a+x /home/miranda9/automl-meta-learning/automl-proj/experiments/meta_learning/supervised_experiments_submission.py
# chmod a+x /home/miranda9/automl-meta-learning/results_plots/is_rapid_learning_real.py
# condor_submit -i
# condor_submit job.sub
#
####################
Path = /home/miranda9/automl-meta-learning/
Path = /home/miranda9/ML4Coq/
# Executable = /home/miranda9/automl-meta-learning/automl-proj/experiments/meta_learning/supervised_experiments_submission.py
# Executable = /home/miranda9/automl-meta-learning/automl-proj/experiments/meta_learning/meta_learning_experiments_submission.py
# Executable = /home/miranda9/meta-learning-lstm-pytorch/main.py
# Executable = /home/miranda9/automl-meta-learning/automl-proj/meta_learning/datasets/rand_fc_nn_vec_mu_ls_gen.py
# Executable = /home/miranda9/automl-meta-learning/results_plots/is_rapid_learning_real.py
## Output Files
Log = experiment_output_job.$(CLUSTER).log.out
Output = experiment_output_job.$(CLUSTER).out.out
Error = experiment_output_job.$(CLUSTER).err.out
Output = %(FILENAME).o$(CLUSTER)
# Use this to make sure 1 gpu is available. The key words are case insensitive.
# REquest_gpus = 1
# requirements = (CUDADeviceName != "Tesla K40m")
# requirements = (CUDADeviceName == "Quadro RTX 6000")
# requirements = ((CUDADeviceName = "Tesla K40m")) && (TARGET.Arch == "X86_64") && (TARGET.OpSys == "LINUX") && (TARGET.Disk >= RequestDisk) && (TARGET.Memory >= RequestMemory) && (TARGET.Cpus >= RequestCpus) && (TARGET.gpus >= Requestgpus) && ((TARGET.FileSystemDomain == MY.FileSystemDomain) || (TARGET.HasFileTransfer))
# requirements = (CUDADeviceName == "Tesla K40m")
# requirements = (CUDADeviceName == "GeForce GTX TITAN X")
# Note: to use multiple CPUs instead of the default (one CPU), use request_cpus as well
# Request_cpus = 4
Request_cpus = 16
# E-mail option
Notify_user = me@gmail.com
Notification = always
Environment = MY_CONDOR_JOB_ID= $(CLUSTER)
# "Queue" means add the setup until this line to the queue (needs to be at the end of script).
Queue
或者,如果我可以使用我的可执行脚本作为提交脚本,上面的参数也可以
#!/homes/miranda9/.conda/envs/automl-meta-learning/bin/python
#PBS -V
#PBS -M mee@gmail.com
#PBS -m abe
#PBS -lselect=1:ncpus=112
import sys
import os
for p in sys.path:
print(p)
print(os.environ)